411
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Connexin 26 mutations in autosomal recessive deafness disorders: A review

Mutaciones de Conexina 26 en condiciones de sordera autosómica recesiva: Una revisión

, &
Pages 75-81 | Published online: 07 Jul 2009

References

  • Abe S., Usami S., Shinkawa H., Kelley P., Kimberling W. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000; 37: 41–3
  • Alexandrino F., Sartorato E.L., Marques-de-Faria A.P., Steiner C.E. G59S mutation in the GJB2 (connexin 26) gene in a patient with Bart-Pumphrey syndrome. Am J Med Genet 2005; 136(3)282–4
  • Alvarez A., del Castillo I., Villamar M., Aguirre L.A., Gonzalez-Neira A., et al. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive nonsyndromic hearing loss. Am J Med Genet A 2005; 137(3)255–8
  • Andrea P., Veronesi V., Bicego M., Melchionda S., Zelante L., et al. Hearing loss: frequency and functional studies of the most common connexin 26 alleles. Biochem Biophys Res Commun 2002; 296: 685–91
  • Azaiez H., Chamberlin G.P., Fischer S.M., Welp C.L., Prasad S.D., et al. GJB2: the spectrum of deafness-causing allele variants and their phenotype. Hum Mutat 2004; 24: 305–11
  • Beltramello M., Piazza V., Bukauskas F.F., Pozzan T., Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 2005; 7: 63–9
  • Bitner-Glindzicz M. Hereditary deafness and phenotyping in humans. Br Med Bull 2002; 63: 73–94
  • Bors A., Andrikovics H., Kalmar L., Erdei N., Galambos S., et al. Frequencies of two common mutations (c.35delG and c.167delT) of the connexin 26 gene in different populations of Hungary. Int J Mol Med 2004; 14(6)1105–8
  • Brobby G.W., Muller-Myhsok B., Horstmann R.D. Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med 1998; 338(8)548–50
  • Chang E.H., van Camp G., Smith R.J.H. The Role of Connexins in Human Disease. Ear & Hearing 2003; 24(4)314–323
  • Chen Y., Deng Y., Bao X., Reuss L., Altenberg G.A. Mechanism of the defect in gap-junctional communication by expression of a connexin 26 mutant associated with dominant deafness. FASEB J 2005; 19(11)1516–8
  • Cohn E., Kelley P., Fowler T., Gorga M. Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene (GJB2/DFNB1). Pediatrics 1999; 103: 546–550
  • Common J.E., Bitner-Glindzicz M., O'Toole E.A., Barnes M.R., Jenkins L., et al. Specific loss of connexin 26 expression in ductal sweat gland epithelium associated with the deletion mutation del(GJB6-D13S1830). Clin Exp Dermatol 2005; 30(6)688–93
  • Cryns K., Orzan E., Murgia A., Huygen P.L., Moreno F., et al. A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet 2004; 41: 147–54
  • Cucci R.A., Prasad S., Kelley P.M., Green G.E., Storm K., et al. The M34T allele variant of connexin 26. Genet Test 2000; 4: 335–44
  • Dahl H., Saunders K., Kelly T., Osborn A., Wilcox S., et al. Prevalence and nature of connexin 26 mutations in children with nonsyndromic deafness. Med J Aust 2001; 175: 191–4
  • del Castillo I., Moreno-Pelayo M.A., del Castillo F.J., Brownstein Z., Marlin S., et al. Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 2003; 73(6)1452–8
  • del Castillo I., Villamar M., Moreno-Pelayo M.A., del Castillo F.J., Alvarez A., et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 2002; 346(4)243–9
  • Denoyelle F., Lina-Granade G., Plauchu H., Bruzzone R., Chaib H., et al. Connexin 26 gene linked to a dominant deafness. Nature 1998; 393(6683)319–20
  • Denoyelle F., Marlin S., Weil D., Moatti L. Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling. Lancet 1999; 353: 1298–303
  • Denoyelle F., Weil D., Maw M., Wilcox S., Lench S., et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997; 6: 2173–7
  • Erbe C.B., Harris K.C., Runge-Samuelson C.L., Flanary V.A., Wackym P.A. Connexin 26 and connexin 30 mutations in children with nonsyndromic hearing loss. Laryngoscope 2004; 114: 607–11
  • Estivill X., Fortina P., Surrey S., Rabionet R., Melchionda S., et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998; 351: 394–8
  • Feldmann D., Denoyelle F., Loundon N., Weil D., Garabedian E.N., et al. Clinical evidence of the nonpathogenic nature of the M34T variant in the connexin 26 gene. Eur J Hum Genet 2004; 12: 279–84
  • Frei K., Lucas T., Ramsebner R., Schofer C., Baumgartner W.D., et al. A novel connexin 26 mutation associated with autosomal recessive sensorineural deafness. Audiol Neurootol 2004a; 9: 47–50
  • Frei K., Ramsebner R., Lucas T., Baumgartner W.D., Schoefer C., et al. Screening for monogenetic del(GJB6-D13S1830) and digenic del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from Eastern Austria. Hear Res 2004b; 196(1-2)115–8
  • Gerido D.A., White T.W. Connexin disorders of the ear skin, and lens. Biochim Biophys Acta 2004; 1662: 159–70
  • Green G.E., Scott D.A., McDonald J.M., Woodworth G.G., Sheffield V.C., et al. Carrier rates in the Midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999; 281: 2211–6
  • Hamelmann C., Amedofu G.K., Albrecht K., Muntau B., Gelhaus A., et al. Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 2001; 18(1)84–5
  • Hardisty R., Mburu P., Brown S. ENU mutagenesis and the search for deafness genes. Br J Audiol 1999; 33: 279–83
  • Houseman M.J., Ellis L.A., Pagnamenta A., Di W.L., Rickard S., et al. Genetic analysis of the connexin-26 M34T variant: identification of genotype M34T/M34T segregating with mild-moderate nonsyndromic sensorineural hearing loss. J Med Genet 2001; 38: 20–5
  • Kammen-Jolly K., Ichiki H., Scholtz A., Gsenger M., Kreczy A., et al. Connexin 26 in human fetal development of the inner ear. Hear Res 2001; 160: 15–21
  • Kelley P.M., Abe S., Askew J.W., Smith S.D., Usami S. Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 1999; 62(2)172–6
  • Kelley P.M., Harris D.J., Comer B.C., Askew J.W., Fowler T., et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 1998; 62: 792–9
  • Kelsell D.P., Dunlop J., Stevens H.P., Lench N.J., Liang J.N., et al. Connexin 26 mutations in hereditary nonsyndromic sensorineural deafness. Nature 1997; 387: 80–3
  • Kikuchi T., Kimura R., Paul D., Adams J. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 1995; 191: 101–118
  • Lefebvre P.P., Van De Water T.R. Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene. Brain Res Brain Res Rev 2000; 32: 159–62
  • Lautermann J., ten Cate W.J., Altenhoff P., Grummer R., Traub O., et al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 1998; 294(3)415–20
  • Lerer I., Sagi M., Ben-Neriah Z., Wang T., Levi H., et al. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in nonsyndromic deafness: A novel founder mutation in Ashkenazi Jews. Hum Mutat 2001; 18(5)460
  • Lerer I., Sagi M., Malamud E., Levi H., Raas-Rothschild A., et al. Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT. Am J Med Genet 2000; 95(1)53–6
  • Liu X., Xia X., Ke X., Ouyang X., Du L., et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002; 111: 394–397
  • Maheshwari M., Vijaya R., Ghosh M., Shastri S., Kabra M., et al. Screening of families with autosomal recessive nonsyndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. Am J Med Genet A 2003; 120(2)180–4
  • Manthey D., Banach K., Desplantez T., Lee C.G., Kozak C.A., et al. Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. J Membr Biol 2001; 181: 137–148
  • Marlin S., Garabedian E., Roger G., Moatti L. Connexin 26 gene mutations in congenitally deaf children: Pitfalls for genetic counselling. Arch Otolaryngol Head Neck Surg 2001; 127: 927–36
  • Marlin S., Feldmann D., Blons H., Loundon N., Rouillon I., et al. GJB2 and GJB6 mutations: genotypic and phenotypic correlations in a large cohort of hearing-impaired patients. Arch Otolaryngol Head Neck Surg 2005; 131(6)481–7
  • Martin P.E., Coleman S.L., Casalotti S.O., Forge A., Evans W.H. Properties of connexin26 gap junctional proteins derived from mutations associated with nonsyndromal hereditary deafness. Hum Mol Genet 1999; 8: 2369–76
  • Mese G., Londin E., Mui R., Brink P.R., White T.W. Altered gating properties of functional Cx6 mutants associated with recessive nonsyndromic hearing loss. Hum Genet 2004; 115: 191–9
  • Minarik G., Ferak V., Ferakova E., Ficek A., Polakova H., et al. High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with nonsyndromic hearing loss (NSHL). Gen Physiol Biophys 2003; 22(4)549–56
  • Morell R.J., Kim H.J., Hood L.J., Goforth L., Friderici K., et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998; 339: 1500–5
  • Morle L., Bozon M., Alloisio N., Latour P., Vandenberghe A., et al. A novel C202F mutation in the connexin26 gene (GJB2) associated with autosomal dominant isolated hearing loss. J Med Genet 2000; 37(5)368–70
  • Oguchi T., Ohtsuka A., Hashimoto S., Oshima A., Abe S., et al. Clinical features of patients with GJB2 (connexin 26) mutations: severity of hearing loss is correlated with genotypes and protein expression patterns. J Hum Genet 2005; 50(2)76–83
  • Orzan E., Murgia A., Polli R., Martella M., Mazza A., et al. Connexin 26 preverbal hearing impairment: mutation prevalence and heterozygosity in a selected population. Int J Audiol 2002; 41: 120–4
  • Orzan E., Polli R., Martella M., Vinanzi C., Leonardi M., et al. Molecular genetics applied to clinical practice: the Cx26 hearing impairment. Br J Audiol 1999; 33: 291–5
  • Pandya A., Arnos K.S., Xia X.J., Welch K.O., Blanton S.H., et al. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med 2003; 5(4)295–303
  • Piazza V., Beltramello M., Menniti M., Colao E., Malatesta P., et al. Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin Genet 2005; 68(2)161–6
  • Rabionet R., Estivill X. Allele specific oligonucleotide analysis of the common deafness mutation 35delG in the connexin 26 [GJB2] gene. J Med Genet 1999; 36(3)260–1
  • Rabionet R., Gasparini P., Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 2000; 16: 190–202
  • Rabionet R., Lopez-Bigas N., Arbones M.L., Estivill X. Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002; 8(5)205–12
  • Reardon W. Connexin 26 gene mutation and autosomal recessive deafness. Lancet 1998; 351: 383–4
  • Richard G., Brown N., Ishida-Yamamoto A., Krol A. Expanding the phenotypic spectrum of Cx26 disorders: Bart-Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol 2004; 123(5)856–63
  • Richard G., Rouan F., Willoughby C.E., Brown N., Chung P., et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet 2002; 70(5)1341–8
  • Sabag A.D., Dagan O., Avraham K.B. Connexins in hearing loss: a comprehensive overview. J Basic Clin Physiol Pharmacol 2005; 16(2-3)101–16
  • Santos R.L., Aulchenko Y.S., Huygen P.L., van der Donk K.P., de Wijs I.J., et al. Hearing impairment in Dutch patients with connexin 26 (GJB2) and connexin 30 (GJB6) mutations. Int J Pediatr Otorhinolaryngol 2005; 69(2)165–74
  • Scott D., Kraft M., Carmi R., Ramesh A., Elbedour K., et al. Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum Mutat 1998a; 11: 387–394
  • Scott D.A., Kraft M.L., Stone E.M., Sheffield V.C., Smith R.J. Connexin mutations and hearing loss. Nature 1998b; 391: 32
  • Seeman P., Bendova O., Raskova D., Malikova M., Groh D., et al. heterozygosity with mutations involving both the GJB2 and GJB6 genes is a possible, but very rare, cause of congenital deafness in the Czech population. Ann Hum Genet 2005; 69(1)9–14
  • Segretain D., Falk M.M. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 2004; 1662: 3–21
  • Smith R., van Camp V. Cloning genes for nonsyndromal hearing impairment. Br J Audiol 1999; 33: 271–278
  • Sohl G., Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 2003; 10: 173–180
  • Stinckens C., Kremer H., van Wijk E., Hoefsloot L.H., Huygen P.L., et al. Longitudinal phenotypic analysis in patients with connexin 26 (GJB2) (DFNB1) and connexin 30 (GJB6) mutations. Ann Otol Rhinol Laryngol 2004; 113(7)587–93
  • Sun J., Ahmad S., Chen S., Tang W., Zhang Y., et al. Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005; 288(3)C613–23
  • Tekin M., Akar N., Cin S., Blanton S.H., Xia X.J., et al. Connexin 26 (GJB2) mutations in the Turkish population: implications for the origin and high frequency of the 35delG mutation in Caucasians. Hum Genet 2001; 108(5)385–9
  • Thonnissen E., Rabionet R., Arbones L., Estivill X., Willecke K., et al. Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet 2002; 111: 190–197
  • van Hauwe P., Coucke P., van Camp G. The DFNA2 locus for hearing impairment: two genes regulating K+ ion recycling in the inner ear. Br J Audiol 1999; 33: 285–289
  • Wang Y., Kung C., Su C., Hsu H., Tsai C., et al. Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002; 10: 495–8
  • Wei C-J., Xu X., Lo C.W. Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 2004; 20: 811–38
  • Yotsumoto S., Hashiguchi T., Chen X., Ohtake N., Tomitaka A., et al. Novel mutations in GJB2 encoding connexin-26 in Japanese patients with keratitis-ichthyosis-deafness syndrome. Br J Dermatol 2003; 148(4)649–53
  • Zhao H.B. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 2005; 21(7)1859–68
  • Zoll B., Petersen L., Lange K., Gabriel P., Kiese-Himmel C., et al. Evaluation of Cx26/GJB2 in German hearing-impaired persons: mutation spectrum and detection of disequilibrium between M34T (c.101T > C) and –493del10. Human Mutat 2003; 21: 98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.