680
Views
106
CrossRef citations to date
0
Altmetric
Original Articles

Short Rotation Coppice Culture of Willows and Poplars as Energy Crops on Metal Contaminated Agricultural Soils

, , , , , , , , , , , , & show all
Pages 194-207 | Published online: 03 Aug 2011

REFERENCES

  • Aylott, M J, Casella, E, Tubby, I, Street, N R, Smith, P, and Taylor, G, 2008. Yield and spatial supply of bioenergy polar and willow short-rotation coppice in the UL, New Phytol. 178 (2008), pp. 358–370.
  • Berti, W R, and Cunningham, S D, 1997. In-place inactivation of Pb in Pb contaminated soils, Environ Sci Technol. 31 (1997), pp. 1359–1364.
  • Cannell, M GR, and Smith, R I, 1980. Yields of minirotation closely spaced hardwoods in temperate regions: review and appraisal, For Sci. 26 (1980), pp. 415–428.
  • Cassman, K G, and Liska, A J, 2007. Food and fuel for all: realistic or foolish?, Biofuels Bioprod Bioref. 1 (2007), pp. 18–23.
  • Cunningham, S D, and Berti, W R, 1993. Remediation of contaminated soils with green plants: an overview, In Vitro Cell Dev Biol. 29 (1993), pp. 207–212.
  • Cunningham, S D, Berti, W R, and Huang, J WW, 1995. Phytoremediation of contaminated soils, Trends Biotechnol. 13 (1995), pp. 393–397.
  • De Temmerman, L, Vanongeval, L, Boon, W, Hoenig, M, and Geypens, M, 2003. Heavy metal content of arable soils in Northern Belgium, Water Air Soil Pollut. 148 (2003), pp. 61–76.
  • Di Baccio, D, Tognetti, R, Sebastiani, L, and Vitagliano, C, 2003. Responses of Populus deltoides x Populus nigra (Populus x euramericana) clone I-214 to high zinc concentrations, New Phytol. 159 (2003), pp. 443–452.
  • Dickinson, NM, and Pulford, I D, 2005. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environ Int. 31 (2005), pp. 609–613.
  • Doty, SL., 2008. Enhancing phytoremediation through the use of transgenics and endophytes, New Phytol. 179 (2008), pp. 318–333.
  • Giachetti, G, and Sebastiani, L, 2006. Metal accumulation in poplar plant grown with industrial wastes, Chemosphere. 64 (2006), pp. 446–454.
  • Granel, T, Robinson, B, Mills, T, Clothier, B, Green, S, and Fung, L, 2002. Cadmium accumulation by willow clones used for soil conservations, stock fodder, and phytoremediation, Aust J Soil Res. 40 (2002), pp. 1331–1337.
  • Greger, M., 1999. "Salix as a phytoextractor". In: Wenzel, W W, Adriano, D C, Alloway, B, Doner, H E, and Keller, C, eds. Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements. Vienna: BOKU; 1999. pp. 872–873.
  • Hammer, D, Kayser, A, and Keller, C, 2003. Phytoextraction of Cd and Zn with Salix viminalis in field trials, Soil Use Manage. 19 (2003), pp. 187–192.
  • Heller, M, Keoleian, G, and Volk, T, 2003. Life cycle assessment of a willow bioenergy cropping system, Biomass Bioenergy. 25 (2003), pp. 147–165, .
  • Hogervorst, J, Plusquin, M, Vangronsveld, J, Nawrot, T, Cuypers, A, Van Hecke, E, Roels, H A, Carleer, R, and Staessen, J A, 2007. House dust as possible route of environmental exposure to cadmium and lead in the adult general population, Environ Res. 103 (2007), pp. 30–37.
  • Johansson, D JA, and Azar, C, 2007. A scenario based analysis of land competition between food and bioenergy production in the US, Climatic Change. 82 (2007), pp. 267–291.
  • Klang-Westin, E, and Erikson, J, 2003. Potential of Salix as phytoextractor for Cd on moderately contaminated soils, Plant Soil. 249 (2003), pp. 127–137.
  • Koopmans, G F, Römkens, PFAM, Song, J, Temminghoff, E JM, and Japenga, J, 2007. Predicting the phytoextraction duration to remediate heavy metal contaminated soils, Water Air Soil Pollut. 181 (2007), pp. 355–371.
  • Landberg, T, and Greger, M, 1996. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas, Appl. Geochem. 11 (1996), pp. 175–180.
  • Laureysens, I, Blust, R, De Temmerman, L, Lemmens, C, and Ceulemans, R, 2004. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations, Environ Pollut. 131 (2004), pp. 485–494.
  • Laureysens, I, De Temmerman, L, Hastir, T, Van Gysel, M, and Ceulemans, R, 2005. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential, Environ Pollut. 133 (2005), pp. 541–51.
  • Lebeau, T, Braud, A, and Jézéquel, K, 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review, Environ Pollut. 153 (2008), pp. 497–522.
  • Lehmann, EL., 1975. "Nonparametrics, statistical methods based on ranks". San Francisco, CA: Holden-day Inc; 1975. p. 457.
  • Lin, C, Liu, J, Liu, L, Zhu, T, Sheng, L, and Wang, D, 2008. Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels, Environ Exp Bot. 65 (2008), pp. 410–416.
  • Lodewyckx, C, Vangronsveld, J, Porteous Moore, F, Taghavi, S, Mergeay, M, and van der Lelie, D, 2002.. Endophytic bacteria and their potential applications, Crit Rev Plant Sci. 21 (2002.), pp. 583–606.
  • Mastretta, C, Barac, T, Vangronsveld, J, Newman, L, Taghavi, S, and van der Lelie, D, 2006. "Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments". In: Harding, S E, and Tombs, M P, eds. Biotechnology and genetic engineering reviews. Vol. 23. Paris: Lavoisier; 2006. pp. 175–207.
  • Maxted, A P, Black, C R, West, H M, Crout, N MJ, McGrath, S P, and Young, S D, 2007. Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge, Plant Soil. 290 (2007), pp. 157–172.
  • Meers, E, Vandecasteele, B, Ruttens, A, Vangronsveld, J, and Tack, F MG, 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals, Environ Exp Bot. 60 (2007), pp. 57–68.
  • Meers, E, Van Slycken, S, Adriaensen, K, Ruttens, A, Vangronsveld, J, Du Laing, G, Witters, N, and Thewys, Tack FMG, 2010. The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment, Chemosphere. 78 (2010), pp. 35–41.
  • Nawrot, T, Plusquin, M, Hogervorst, J, Roels, H A, Celis, H, Thijs, L, Vangronsveld, J, Van Hecke, E, and Staessen, J A, 2006. Environmental exposure to cadmium and risk of cancer: a prospective population-based study, Lancet Oncol. 7 (2006), pp. 119–126.
  • Nehnevajova, E, Herzig, R, Federer, G, Erismann, K H, and Schwitzguebel, J P, 2005. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis, Int J Phytorem. 7 (2005), pp. 337–349.
  • Nordh, N E, and Verwijst, T, 2004. Above ground biomass assessments and first cutting cycle production in willow (Salix spp.) coppice: a comparison between destructive and non-destructive methods, Biomass Bioenergy. 27 (2004), pp. 1–8.
  • Pulford, I D, and Dickinson, N M, 2006. "Phytoremediation technologies using trees". In: Prasad, M NV, Sajwan, K S, and Naïdu, R, eds. Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Boca Raton, FL: CRC Press; 2006. pp. 375–395, .
  • Reddersen, J., 2001. SRC-willow (Salix viminalis) as a resource for flower-visiting insects, Biomass Bioenergy. 20 (2001), pp. 171–179.
  • Schröder, P, Herzig, R, Bojinov, B, Ruttens, A, Nehnevajova, E, Samatiadis, S, Memon, A, Vassilev, A, Caviezel, M, and Vangronsveld, J, 2008. Bioenergy to save the world: producing novel energy plants for growth on abandoned land, Environ Sci Pollut Res. 9 (2008), pp. 1–9.
  • Stals, M, Thijssen, E, Vangronsveld, J, Carleer, R, Schreurs, S, and Ypermans, J, 2010. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals, J Anal Appl Pyrolysis. 87 (2010), pp. 1–7.
  • Thewys, T, and Kuppens, T, 2008. Economics of willow pyrolysis after phytoextraction, Int J Phytorem. 10 (2008), pp. 561–583.
  • Thewys, T, Witters, N, and Meers, E, 2010a. Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: Economics of anaerobic digestion of metal contaminated maize in Belgium, Int J Phytorem. 12 (7) (2010a), pp. 663–679.
  • Thewys, T, Witters, N, Van Slycken, S, Ruttens, A, Meers, E, Tack, F MG, and Vangronsveld, J, 2010b. Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: Effect on the farmer's income, Int. J. Phytorem. 12 (7) (2010b), pp. 650–662.
  • Van Ginneken, L, Meers, E, Guisson, R, Ruttens, A, Elst, K, Tack, F MG, Vangronsveld, J, Diels, L, and Dejonghe, W, 2007. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production, J Environ Eng Landscape Manage. 15 (2007), pp. 227–236.
  • Van Nevel, L, Mertens, J, Oorts, K, and Verheyen, K, 2007. Phytoextraction of metals from soils: How far from practice?, Environ Pollut. 150 (2007), pp. 34–40.
  • Van Ranst, E, Verloo, M, Demeyer, A, and Pauwels, J M, 1999. "Manual for the soil chemistry and fertility laboratory". Ghent University, Faculty Agricultural and Applied Biological Sciences; 1999. p. 243.
  • Vangronsveld, J, and Cunningham, S D, 1998. "Metal-contaminated soils: in situ inactivation and phytorestoration". Berlin: Springer-Verlag; 1998. pp. 1–265.
  • Vangronsveld, J, Herzig, R, Weyens, N, Boulet, J, Adriaensen, K, Ruttens, A, Thewys, T, Vassilev, A, Meers, E, Nehnevajova, E, van der Lelie, D, and Mench, M, 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field, Environ Sci Pollut Res. 16 (2009), pp. 765–794.
  • Vlaams Reglement Bodemsanering (Vlarebo), 2009. "Vlaams Reglement Betreffende bodemsanering en bodenbescherming. Openbare Vlaamse Afvalstoffenmaatschappij. D/2005/5024/44". 2009. p. 203, February 2009.
  • Weyens, N, van der Lelie, D, Taghavi, S, and Vangronsveld, J, 2009a. Phytoremediation: plant–endophyte partnerships take the challenge, Curr Opin Biotechnol. 20 (2009a), pp. 1–7.
  • Weyens, N, van der Lelie, D, Taghavi, S, Newman, L, and Vangronsveld, J, 2009b. Exploiting plant–microbe partnerships for improving biomass production and remediation, Trends Biotechnol. 27 (2009b), pp. 591–598.
  • Witters, N, Van Slycken, S, Ruttens, A, Adriansens, K, Meers, E, Meiresonne, L, Tack, F MG, Thewys, T, Laes, E, and Vangronsveld, J, 2009. Short Rotation Coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment, BioEnergy Res. 2 (2009), pp. 144–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.