802
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site

&

References

  • Aksoy A, Demirezen D, Duman F. 2005. Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water Air Soil Pollut 164:241–255.
  • Allen S. 1989. Chemical analysis of ecological materials. London: Blackwell Scientific Publications.
  • Alloway BJ. 2013. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer.
  • Alyemeni MN, Almohisen IAA. 2014. Traffic and industrial activities around Riyadh cause the accumulation of heavy metals in legumes: a case study. Saudi J Biol Sci 21:167–172.
  • Andres EF, Tenorio JL, Walter I. 2010. Biomass production and nutrient concentration of kenaf grown on sewage sludge-amended soil. Span J Agric Res 8:472–480.
  • Antolín MC, Pascual I, García C, Polo A, Sánchez-Díaz M. 2005. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop Res 94:224–237.
  • Antoniadis V, Tsadilas CD, Samaras V. 2010. Trace element availability in a sewage sludge-amended cotton grown Mediterranean soil. Chemosphere 80:1308–1313.
  • APHA. 1998. Standard methods for the examination of water and wastewater. Washington (DC): American Public Health Association.
  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R. 2005. Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth B 231:350–356.
  • Blaylock MJ, Huang JW. 2005. Phytoextraction of metals. In: Raskin I, Ensley BD, editors.Phytoremediation of toxic metals using plants to clean up the environment. New York (NY): Wiley. p. 53–70.
  • Bonanno G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Safe 74:1057–1064.
  • Bonanno G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Safe 97:124–130.
  • Bonanno G, Lo Giudice R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Ind 10:639–645.
  • Boulos L. 1999. Flora of Egypt, volume 1, (Azollaceae–Oxalidaceae). Cairo: Al-Hadara Publishing.
  • Boulos L. 2002. Flora of Egypt, volume 3, (Verbenaceae–Compositae). Cairo: Al-Hadara Publishing.
  • Boulos L. 2005. Flora of Egypt, volume 4 Monocotyledons, (Alismataceae–Orchidaceae). Cairo: Al-Hadara Publishing.
  • Bramryd T. 2013. Long-term effects of sewage sludge application on the heavy metal concentrations in acid pine (Pinus sylvestris L.) forests in a climatic gradient in Sweden. Forest Ecol Manage 289:434–444.
  • Branzini A, González RS, Zubillaga M. 2012. Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manage 102:50–54.
  • Divan Junior AM, de Oliveira PL, Perry CT, Atz VL, Azzarini-Rostirola LN, Raya-Rodriguez MT. 2009. Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol Ind 9:1156–1162.
  • Du Laing G, Van de Moortel AMK, Moors W, De Grauwe P, Meers E, Tack FMG, Verloo MG. 2009. Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol Eng 35:310–318.
  • Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: implication for phytoremediation. J Environ Qual 26:776–781.
  • Eid EM, El-Sheikh MA, Alatar AA. 2012a. Uptake of Ag, Co and Ni by the organs of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus and their potential use as contamination indicators. Open J Modern Hydrol 2:21–27.
  • Eid EM, Shaltout KH, El-Sheikh MA, Asaeda T. 2012b. Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspective for phytoremediation. Flora 207:783–794.
  • Eid EM, Shaltout KH. 2014. Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecol Eng 73:17–25.
  • EMA. 1980. Climatic normals for the Arab Republic of Egypt up to 1975. Cairo: Ministry of Civil Aviation, Egyptian Meteorological Authority, General Organization for Governmental Printing Offices.
  • Feng J, Wang Y, Zhao J, Zhu L, Bian X, Zhang W. 2011. Source attributions of heavy metals in rice plant along highway in Eastern China. J Environ Sci 23:1158–1164.
  • Frost HL, Ketchum LH. 2000. Trace metal concentration in durum wheat from application of sewage sludge and commercial fertilizer. Adv Environ Res 4:347–355.
  • Gajewska E, Sklodowska M, Slaba M, Mazur J. 2006. Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Planta 50:653–659.
  • Galal TM, Shehata HS. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Ind 48:244–251.
  • Gascó G, Lobo MC, Guerrero F. 2005. Land application of sewage sludge: a soil columns study. Water SA 31:309–318.
  • Ghazy M, Dockhorn T, Dichtl N. 2009. Sewage sludge management in Egypt: current status and perspectives towards a sustainable agricultural use. Int J Environ Ecol Geol Mining Eng 3:68–76.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18.
  • Guilizzoni P. 1991. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquat Biol 41:87–109.
  • Huffman EWD, Allaway WH. 1973. Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986.
  • Jamali MK, Kazi TG, Arain MB, Afrid HI, Jalbani N, Kandhro GA, Shah AQ, Baig JA. 2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J Hazard Mater 164:1386–1391.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. Boca Raton (FL): CRC Press.
  • Khan S, Chao C, Waqas M, Arp HPH, Zhu YG. 2013. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632.
  • Khan S, Reid BJ, Li G, Zhu YG. 2014. Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161.
  • Khan S, Waqas M, Ding F, Shamshad I, Arp HPH, Li G. 2015. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253.
  • Kim IS, Kang HK, Johnson-Green P, Lee EJ. 2003. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243.
  • Kisku GC, Barman SC, Bhargava SK. 2000. Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut 120:121–137.
  • Kitao M, Lei TT, Koike T. 1997. Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant 101:249–256.
  • Kumar V, Chopra AK, Srivastava S. 2016. Assessment of heavy metals in spinach (Spinacia oleracea L.) grown in sewage sludge-amended soil. Commun Soil Sci Plant Anal 47:221–236.
  • Lewis S, Donkin ME, Depledge MH. 2001. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291.
  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP. 2009. Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986.
  • Liu J, Wang J, Qi J, Li X, Chen Y, Wang C, Wu Y. 2012. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China. Clean Soil Air Water 40:766–772.
  • Liu YJ, Zhu YG, Ding H. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut 145:387–390.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature 409:579.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Safe 126:111–121.
  • Mahler RJ, Bingham FT, Sposito G, Page AL. 1980. Cadmium enriched sewage sludge application to acid and calcareous soils, relation between treatment, Cd in saturated extracts and Cd treatment. J Environ Qual 9:359–364.
  • Malik NJ, Chamon AS, Donald MD, Elahi SF, Faiz SMA. 2011. Effect of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, variety BR-49). J Bangladesh Assoc Young Res 1:79–91.
  • Marsden PA. 2003. Increased body lead burden cause or consequence of chronic renal insufficiency. New Engl J Med 348:345–347.
  • Mason CF. 2002. Biology of freshwater pollution. San Francisco (CA): Benjamin Cummings.
  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359.
  • Muller G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geol J 2:108–118.
  • Nanda S, Abraham A. 2013. Remediation of heavy metal contaminated soil. Afr J Biotechnol 12:3099–3109.
  • Navas A, Bermúdez F, Machín J. 1998. Influence of sewage sludge application on physical and chemical properties of gypsisols. Geoderma 87:123–135.
  • Nawab J, Khan S, Shah MT, Gul N, Ali A, Khan K, Huang Q. 2016. Heavy metal bioaccumulation in native plants in chromite impacted sites: a search for effective remediating plant species. Clean Soil Air Water 44:37–46.
  • Nawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R. 2015a. Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. Int J Phytoremediat 17:801–813.
  • Nawab J, Khan S, Shah MT, Qamar Z, Din I, Mahmood Q, Gul N, Huang Q. 2015b. Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, Northern Pakistan. J Environ Monitor 187:605. DOI 10.1007/s10661-015-4807-9.
  • Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S. 1995. Responses of maize (Zea mays L.) plants to copper stress I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol 56:15–39.
  • Planquart P, Bonin G, Prone A, Massiani C. 1999. Distribution, movement and plant availability of trace metals in soils amended with sewage sludge compost: application to low metal loading. Sci Total Environ 241:161–179.
  • Reeves RD, Baker AJM. 2000. Metal accumulating plants. In: Raskin I, Ensley BD, editors.Phytoremediation of toxic metals: using plant to clean up the environment. New York (NY): Wiley. p. 193–230.
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. 2005. Chromium toxicity in plants. Environ Int 31:739–753.
  • Singh RP, Agrawal M. 2007. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67:2229–2240.
  • Singh N, Ma LQ. 2007. Assessing plants for phytoremediation of arsenic-contaminated soils. In: Willey N, editor. Phytoremediation: methods and reviews. Totowa (NJ): Humana Press Inc. p. 319–347.
  • Sigh BR, Narwai RP, Jeng AS, Almas A. 1995. Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels. Commun Soil Sci Plant Anal 26:2123–2142.
  • Song XD, Xue XY, Chen DZ, He PJ, Dai XH. 2014. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109:213–220.
  • Soriano-Disla JM, Gómez I, Navarro-Pedreno J, Jordán MM. 2014. The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. J Soil Sediment 14:687–696.
  • Spinosa L. 2011. Wastewater sludge: a global overview of the current status and future prospects. London: IWA Publishing Ltd..
  • Stadelmann FX, Furrer OJ. 1985. Long-term effects of sewage sludge and pig slurry applications on microbiological and chemical soil properties in field experiment. In: Williams JH, Guidiand G, L'Hermite P, editors. Long-term effects of sewage sludge and farm slurry application. London: Elsevier. p. 136–145.
  • Statsoft. 2007. Statistica version 7.1. Tulsa (OK): Statsoft Inc..
  • Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB. 2002. pH dependent release of cadmium, copper, and lead from natural and sludge-amended soils. J Environ Qual 31:1901–1909.
  • Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation, an ecological solution to organic contamination. Ecol Eng 18:647–658.
  • Taskila S, Tuomola M, Ojamo H. 2012. Enrichment cultivation in detection of food-borne Salmonella. Food Control 26:369–377.
  • Tripathi A, Misra DR. 2012. Contaminated sewage sludge disposal as a source of heavy metal bioavailability to native plants. Natl Acad Sci Lett 35:121–124.
  • UNESCO. 1977. Map of the world distribution of arid regions. Paris: MAB Technical Notes.
  • Vymazal J, Kröpfelová L, Švehla J, Chrastný V, Štíchová J. 2009. Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng 35:303–309.
  • Wang X, Chen T, Ge Y, Jia Y. 2008a. Studies on land application of sewage sludge and its limiting factors. J Hazar Mater 160:554–558.
  • Wang KS, Huang LC, Lee HS, Chen PY, Chang SH. 2008b. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672.
  • Waqas M, Khan S, Qing H, Reid BJ, Chao C. 2014. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105:53–61.
  • Waqas M, Li G, Khan S, Shamshad I, Reid BJ, Qamar Z, Chao C. 2015. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ Sci Pollut Res Int 22:12114–12123.
  • Weis JS, Glover T, Weis P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ Pollut 131:409–415.
  • Wilke BM. 2005. Determination of chemical and physical soil properties. In: Margesin R, Schinner F, eds. Manual for soil analysis—monitoring and assessing soil bioremediation. Heidelberg: Springer-Verlag. p. 47–95.
  • Wu S. 1994. Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:991–1003.
  • Yanqun Z., Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464.
  • Zielińska A, Oleszczuk P, Charmas B, Skubiszewska-Zieba J, Pasieczna-Pathowska S. 2015. Effect of sewage sludge properties on the biochar characteristic. J Anal Appl Pyrol 112:201–213.
  • Zornoza P, Robles S, Martin N. 1999. Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.