337
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil

, , , , , , , , , & show all

References

  • Abdel-Wahab HH, Zahran HH, Abd-Alla MH. 1996. Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer. Folia Microbiol 41(4): 303–308.
  • Arreseigor C, Minchin FR, Gordon AJ, Nath AK. 1997. Possible cause of the physiological decline in soybean nitrogen fixation in response to nitrate. J Exp Bot 48(4): 905–913.
  • Atkins CA, Shelp BJ, Kuo J, Peoples MB, Pate TS. 1984. Nitrogen nutrition and the development and senescence of nodules on cowpea seedlings. Planta 162(4): 316–326.
  • Bacanambo M, Harper JE. 1996. Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C:N ratio. Physiol Plant 98(3): 529–538.
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 233–266.
  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recy 11(1–4): 41–49.
  • Becerra-Castro C, Kidd PS, Prieto-Fernández A, Weyens N, Acea MJ, Vangronsveld J. 2011. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant Soil 340(1): 413–433.
  • Becerra-Castro C, Prieto-Fernández A, Kidd PS, Weyens N, Rodríguez-Garrido B, Touceda-González M, Acea MJ. 2012. Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362(1): 247–260.
  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2): 241–250.
  • Bergmeyer HU, Gawenn K, Grassl M. 1974. Enzymes as biochemical reagents. In: Bergmeyer HU, ed. Methods in enzymatic analysis. New York: Academic Press. p. 425–522.
  • Brear EM, Day DA, Smith PMC. 2013. Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci 4: 359.
  • Carneiro MAC, Siqueira JO, Moreira FMS, Soares ALL. 2008. Soil organic carbon, total nitrogen, microbial biomass and activity in two rehabilitation chronosequences after bauxite mining. Rev Bras Ciênc Solo 32(2):621–632.
  • Carvalho TS, Moreira FMS. 2010. Simbioses tripartites: leguminosas, fungos micorrízicos e bactérias fixadoras de nitrogênio nodulíferas. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM, eds. Micorrizas: 30 anos de pesquisa no Brasil. 1st ed. Lavras: UFLA. p. 383–413.
  • Chaudhary P, Dudeja SS, Kapoor KK. 2004. Effectivity of host-Rhizobium leguminosarum symbiosis in soils receiving sewage water containing heavy metals. Microbiol Res 159(2): 121–127.
  • Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M. 2012. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J Exp Bot 63(10): 3923–3934.
  • Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J. 2013. Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb Biotechnol 6(4): 371–384.
  • Cunningham JE, Kuiack C. 1992. Production of citric and oxalic acids and solubilization of calcium-phosphate by Penicillium bilaii. Appl Environ Microbiol 58(5): 1451–1458.
  • Cunningham SD, Shann JR, Crowley DE, Anderson TA. 1997. Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JL, ed. Phytoremediation of soil and water contaminants. Washington: American Chemical Society. p. 2–17.
  • Davis DH, Doudoroff M, Stanier RY. 1969. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Evol Microbiol 19: 375–390.
  • Dias-Júnior HE, Moreira FMS, Siqueira JO, Silva R. 1998. Heavy metals, microbial density and activity in a soil contaminated by wastes from a zinc industry. Rev Bras Ciênc Solo 22(4): 631–640.
  • Eaglesham ARJ. 1989. Nitrate inhibition of root nodule symbiosis in doubly rooted soybean plants. Crop Sci 29(1): 115–119.
  • Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA. Manual de métodos de análise de solos. 2 ed. Rio de Janeiro, 230 p. 2011.
  • Epstein E, Bloom A. 2005. Mineral Nutrition of Plants: Principles and Perspectives. 2nd ed. Sunderland: Sinauer. 380 p.
  • Ferreira DF. 2011. SISVAR: A computer statistical analysis system. Ciênc. Agrotec. 35(6): 1039–1042.
  • Ferreira PAA, Lopes G, Bomfeti CA, Longatti SMO, Soares CRFS, Guilherme LRG, Moreira FMS. 2013. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World J Microbiol Biotechnol 29(11): 2055–2066.
  • Ferreira PAA, Bomfeti CA, Silva Júnior R, Soares BL, Soares CRFS, Moreira FMS. 2012. Symbiotic efficiency of Cupriavidus necator strains tolerant to zinc, cadmium, copper and lead. Pesqui Agropec Bras 47(1): 85–95.
  • Franco AA, Faria SM. 1997. The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29(5–6): 897–903.
  • Franco AA, Campello EF, Faria SM, Dias LE. 2000. The importance of biological nitrogen fixation on land rehabilitation. In: Pedrosa FO, Hungria M, Yates G, eds. Nitrogen fixation: From molecules to crop productivity. Dordrecht: Kluwer Academic Publishers. p. 569–570.
  • Franco AA, Balieiro FC. 2000. The role of biological nitrogen fixation in land reclamation, agroecology and sustainability of tropical agriculture. In: Rocha-Miranda CE, ed. Rio de Janeiro: Academia Brasileira de Ciências. p. 211–233.
  • Fred EB, Waksman SA. 1928. Laboratory manual of general microbiology. New York: McGraw-Hill. 143 p.
  • Frérot H, Lefèbvre C, Gruber W, Collin C, Santos A, Escarré J. 2006. Specific interactions between local metallicous plants improve the phytostabilisation of mine soils. Plant Soil 282:53–65.
  • Giller KE, Witter E, McGrath SP. 2009. Heavy metals and soil microbes. Soil Biol Biochem 41(10): 2031–203.
  • Glick BR. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5): 383–393.
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6): 227–242.
  • Glick BR, Stearns JC. 2011. Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity. Int J Phytoremed 13: 4–16.
  • Gordon AJ, Skot L, James CL, Minchin FR. 2002. Short-term metabolic response of soybean root nodule to nitrate. J Exp Bot 53(368): 423–428.
  • Grill E, Gekeler W, Winnacker EL, Zenk HH. 1986. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Letters 205(1): 47–50.
  • Hedrich R, Schroeder JI. 1989. The Physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 539–569.
  • Hoagland DR, Arnon DL. 1950. The water culture methods for growing plants without soil. Berkeley: California Agriculture Experiment Station. 32 p. ( Bulletin, 347).
  • Illmer P, Schinner F. 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27(3): 257–263.
  • Imsande J. 1986. Inhibition of nodule development in soybean by nitrate or reduced nitrogen. J Exp Bot 37(3): 348–355.
  • Jesus EC, Moreira FMS, Florentino LA, Rodrigues MID, Oliveira MS. 2005. Diversidade de bactérias que nodulam siratro em três sistemas de uso da terra da Amazônia Ocidental. Pesqui Agropec Bras 40: 769–776.
  • Kanayama Y, Yamamoto Y. 1990. Inhibition of nitrogen fixation in soybean plants supplied with nitrate I. Nitrite accumulation and formation of nitrosylleghemoglobin in nodules. Plant Cell Physiol 31(2): 341–346.
  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C. 2009. Trace elements behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67(1): 243–259.
  • de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M. 1998. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48: 369–382.
  • Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. Nucleic acid techniques in bacterial systematics. Chichester, United Kingdom: John Wiley and Sons. p. 115–175.
  • Lebeau T, Braud A, Jézéquel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3): 497–522.
  • Van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L. 2009. Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28(5): 346–358.
  • Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefèbvre C, Escarré J, Cleyet-Marel JC. 2011. Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342(1): 405–417.
  • Maimaiti J, Zhang Y, Yang J, Cen Y, Layzell DB, Peoples M, Dong Z. 2007. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol 9(2): 435–444.
  • Mastretta C, Taghavi S, Van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11(3): 251–267.
  • Matsuda A, Moreira FMS, Siqueira JO. 2002a. Tolerance of rhizobia genera from different origins to zinc, copper and cadmium. Pesqui Agropec Bras 37(3): 343–355.
  • Matsuda A, Moreira FMS, Siqueira JO. 2002b. Survival of Bradyrhizobium and Azorhizobium in heavy metal contaminated soil. Rev Bras Ciênc Solo 26(1): 249–256.
  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FM. 2010. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1): 35–41.
  • Melloni R, Moreira FMS, Nóbrega RSA, Siqueira JO. 2006. Efficiency and phenotypic diversity among nitrogen-fixing bacteria that nodulate cowpea [Vigna unguiculata (L.) WALP] and common bean (Phaseolus vulgaris L.) in bauxite-mined soils under rehabilitation. Rev Bras Ciênc Solo 30(2): 235–246.
  • Moreira FMS, Gillis M, Pot B, Kersters K, Franco AA. 1993. Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. System Appl Microbiol 16(1): 135–146.
  • Moreira FMS, Carvalho TS, Siqueira JO. 2010a. Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biol Fertil Soils 46(8): 771–779.
  • Moreira FMS, Faria SM, Balieiro FC, Florentino LA. 2010b. Bactérias fixadoras de N2 e fungos micorrízicos arbusculares em espécies florestais: avanços e aplicações biotecnológicas. In: Figueiredo MVB, Burity HA, Oliveira JP, Santos CERS, Stamford NP, eds. Biotecnologia aplicada a agricultura. Recife: Embrapa/IPA. p. 439–477.
  • Moreira FMS, Ferreira PAA, Vilela LAF, Carneiro MAC. 2015. Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils. In: Sherameti I, Varma A, eds. Heavy metal contamination of soils. Soil Biology. Switzerland: Springer International Publishing. p. 215–243.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1): 265–270.
  • Neo HH, Layzell DB. 1997. Phloem glutamine and the regulation of O2 diffusion in legume nodules. Plant Physiol 113(1): 259–267.
  • Patten C, Glick B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8): 3795–3801.
  • Plessner O, Klapatch T, Guerinot ML. 1993. Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59(5): 1688–1690.
  • Purcell LC, Sinclair TR. 1990. Nitrogenase activity and nodule gas permeability response to rhizospheric NH3 in soybean. Plant Physiol 92(1): 268–272.
  • Ribeiro AC, Guimarães PTG, Alvarez VVH. 1999. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais – 5ª aproximacão. Viçosa: SBCS. p. 359.
  • Rajkumar M, Ae N, Freitas H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2): 153–160.
  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H. 2013. Perspectives os plant-associated microbes in heavy metal phytoremediation. Biotech Adv 30(6): 1562–1574.
  • Rangel WM, Schneider J, Costa ETS, Soares CRFS, Guilherme LRG, Moreira FMS. 2014. Phytoprotective Effect of Arbuscular Mycorrhizal Fungi Species against Arsenic Toxicity in Tropical Leguminous Species. Int J Phytoremediation 16(7-8): 840–858.
  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, Van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J. 2011. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremed 13: 194–207.
  • Salomons W. 1995. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J Geochem Explor 52(1–2): 5–23.
  • Sanginga N, Wirkom LE, Okogun A, Akobundu IO, Carsky RJ, Tian G. 1996. Nodulation and estimation of symbiotic nitrogen fixation by herbaceous and shrub legumes in Guinea savanna in Nigeria. Biol Fertil Soils 23(4): 441–448.
  • Santos JV, Rangel WM, Guimarães AA, Jaramillo PMD, Rufini M, Marra LM, López MV, Silva MAP, Soares CRFS, Moreira FMS. 2013. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 22(10): 1526–1537.
  • Saraswat S, Rai JPN. 2011. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils. Int J Phytoremediation 13(3): 271–288.
  • Schuller KA, Minchin FR, Gresshoff PM. 1988. Nitrogenase activity and oxygen diffusion in nodules of soybean cv, Bragg and a supernodulating mutant: effects of nitrate. J Exp Bot 39: 865–877.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1): 47–56.
  • Silver S, Phung LT. 2009. Heavy metals, bacterial resistance. In: Schaechter M. ed. Encyclopedia of Microbiology, Oxford: Elsevier. p. 220–227.
  • Small SK, Puri S, Sangwan I, O'Brian MR. 2009. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum. J Bacteriol 191(5): 1361–1368.
  • Sodek L, Silva DM. 1996. Nitrate inhibits soybean nodulation and nodule activity when applied to root regions distant from the nodulation sites. Rev Bras Fisiol Veg 8: 187–191.
  • Stearns JC, Glick BR. 2003. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3): 193–210.
  • Streeter JG. 1988. Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7(1): 1–23.
  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, Van der Lelie D. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3): 748–757.
  • Tang C, Robson AD, Dilworth MJ. 1990. The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytol 114(2): 173–182.
  • Trannin ICB, Moreira FMS, Siqueira JO, Lima A. 2001a. Tolerance of Bradyrhizobium and Azorhizobium strains and isolates to copper, cadmium and zinc “in vitro”. Rev Bras Ciênc Solo 25(2): 305–316.
  • Trannin ICB, Moreira FMS, Siqueira JO. 2001b. Growth and nodulation of Acacia mangium, Enterolobium contortisiliquum and Sesbania virgata in heavy metal contaminated soil. Rev Bras Ciênc Solo 25(3): 743–753.
  • Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J. 2014. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytoremediation 16(7–12): 643–659.
  • Tu S, Ma LQ. 2003. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil 249(2): 373–382.
  • US Environmental Protection Agency. 2007. SW-846 Test Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Available from: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf.
  • Valls M, de Lorenzo V. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4): 327–338.
  • Van Slycken S, Witters N, Meers E, Peene A, Michels E, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Wierink I, Van Dael M, Van Passel S, Tack FM. 2013. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ Pollut 178: 375–380.
  • Vangronsveld J, Clijsters H. 1994. Toxic effects of metals. In: Farago ME, ed. Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. Weinheim: VCH Publishers. p. 150–177.
  • Vangronsveld J, Colpaert JV, Van Tichelen KK. 1996. Reclamation of a bare industrial area contaminated by non-ferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94(2): 131–140.
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16(7): 765–794.
  • Vessey JK, Walsh KB, Layzell DB. 1988. Can a limitation in phloem supply to nodules account for the inhibitory effect of nitrate on nitrogenase activity in soybean? Physiol Plant 74(1): 137–146.
  • Vessey JK, Waterer J. 1992. In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: Recent developments. Physiol Plant 84(1): 171–176.
  • Vincent JM. 1970. A manual for the practical study of root-nodule bacteria. Oxford: Blackwell. 164 p.
  • Vyslouzilova M, Tlustos P, Szakova J. 2003. Zn and Cd phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49(12): 542–547.
  • Wani PA, Khan MS, Zaidi A. 2007. Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27(2): 145–153.
  • Wani PA, Khan MS, Zaidi A. 2008. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81(2): 152–158.
  • Weyens N, Van der Lelie D, Taghavi S, Newman L, Vangronsveld J. 2009a. Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27(10): 591–598.
  • Weyens N, Van der Lelie D, Taghavi S, Vangronsveld J. 2009b. Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2): 248–254.
  • Weyens N, Van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J. 2009c. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43(24): 9413–9418.
  • Weyens N, Truyens S, Dupae J, Newman L, Van der Lelie D, Carleer R, Vangronsveld J. 2010. Potential of Pseudomonas putida W619-TCE to reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158(9): 2915–2919.
  • Weyens N, Boulet J, Adriaensen D, Timmermans J-P, Prinsen E, Van Oevelen S, D'Haen J, Smeets K, Van Der Lelie D, Taghavi S, Vangronsveld J. 2011. Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356: 217–230.
  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J. 2013a. Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6(3): 288–299.
  • Weyens N, Schellingen K, Beckers B, Janssen J, Reinhart C, Van der Lelie D, Taghavi S, Carleer R, Vangronsveld J. 2013b. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13(1): 176–188.
  • Williams LE, Miller AJ. 2001. Transporters responsible for the uptake partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol. 52: 659–668.
  • Willems A, de Ley J, Gillis M, Kersters K. 1991. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J System Bacteriol 41: 445–450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.