214
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Baffled duckweed pond system for treatment of agricultural drainage water containing pharmaceuticals

&

References

  • Allam A, Fliefle A, Tawfik A, Yoshimura C, El Saadi A. 2015. A simulation-based suitability index of the quality and quantity of agricultural drainage water for reuse in irrigation. Sci Total Environ 536:79–90. https://doi.org/10.1016/j.scitotenv.2015.07.029
  • Allam A, Tawfik A, El-Saadi A, Negm A. 2016a. Potentials of using duckweed (Lemna gibba) for treatment of drainage water for reuse in irrigation purposes. Desalin Water Treatm 57(1):459–467. https://doi.org/10.1080/19443994.2014.966760
  • Allam A, Tawfik A, Yoshimura C, Fleifle A. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation. J Environ Manage 172:82–96. https://doi.org/10.1016/j.jenvman.2016.02.022
  • Allam A, Tawfik A, Yoshimura C, Fleifle A. 2016c. Multi-objective models of waste load allocation toward a sustainable reuse of drainage water in irrigation. Environ Sci Pollut Res 23:11823–11834. https://doi:10.1007/s11356-016-6331-z
  • APHA, (American Public Health Association). 2005. Standard methods for the examination of water and waste water, 25th ed. Washington DC, USA.
  • Bal Krishna KC, Polprasert C. 2008. An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecol Eng 34(3):243–250. https://doi.org/10.1016/j.ecoleng.2008.08.013
  • Dilek DY, Hatice A. 2011. Effect of circulation on wastewater treatment by lemna gibba and lemna minor (floating aquatic macrophytes). Int J Phytoremed 13(10):970–984. https://doi.org/10.1080/15226514.2010.532242
  • El-Shafai SA, El-Gohary FA, Nasr FA, Peter van der Steen N, Gijzen HJ. 2007. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour Technol 98(4):798–807. https://doi.org/10.1016/j.biortech.2006.03.011
  • Farrell JB. 2012. Duckweed uptake of phosphorus and five pharmaceuticals: microcosm and wastewater lagoon studies. All Graduate Theses and Dissertations. Paper 1212. http://digitalcommons.usu.edu/etd/1212
  • Fleifle A, Saavedraina O, Yoshimura C, Elzeir M, Tawfik A. 2014. Optimization of integrated water quality management for agricultural efficiency and environmental conservation. Environ Sci Pollut Res 21:8095–8111. https://doi:10.1007/s11356-014-2712-3
  • Guilizzoni P. 1991. The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes. Aqua Bot 41(1–3):87–109. https://doi:10.1016/0304-3770(91)90040-C
  • Hijosa-Valsero M, Matamoros V, Cardona-Sidrach R, Martín-Villacorta J, Bécares E, Bayona JM. 2010. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44(12):3669–3678. https://doi.org/10.1016/j.watres.2010.04.022
  • Iatrou EI, Stasinakis AS, Aloupi M. 2015. Cultivating duckweed Lemna minor in urine and treated domestic wastewater for simultaneous biomass production and removal of nutrients and antimicrobials. Ecol Eng 84:632–639. https://doi.org/10.1016/j.ecoleng.2015.09.071
  • Körner S, Vermaat JE. 1998. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water Res 32(12):3651–3661. https://doi.org/10.1016/S0043-1354(98)00166-3
  • Lagesson A, Fahlman J, Brodin T, Fick J, Jonsson M, Byström P, Klaminder J. 2016. Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web - Insights from a field experiment. Sci Total Environ 568:208–215. https://doi.org/10.1016/j.scitotenv.2016.05.206
  • Lu X, Gao Y, Luo J, Yan S, Rengel Z, Zhang Z. 2014. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). J Hazard Mater 280:389–398. https://doi.org/10.1016/j.jhazmat.2014.08.022
  • Mahmoud M, Tawfik A, El-Gohary F. 2011. Use of down-flow hanging sponge (DHS) reactor as a promising post-treatment system for municipal wastewater. Chem Eng J 168(2):535–543. https://doi.org/10.1016/j.cej.2011.01.019
  • Pichamon P, Naiyanan A. 2011. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremed 13(4). https://doi.org/10.1080/15226514.2010.495145
  • Priyanka S, Angela B, Supriya S. 2014. Phytoremediation potential of duckweed (Lemna minor L.) on steel wastewater. Int J Phytoremed 17(6):589–596. https://doi:10.1080/15226514.2014.950410
  • Ran N, Agami M, Oron G. 2004. A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Res 38(9):2241–2248. https://doi.org/10.1016/j.watres.2004.01.043
  • Reinhold D, Vishwanathan S, Park JJ, David Oh, Saunders FM. 2010. Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80(7):687–692. https://doi.org/10.1016/j.chemosphere.2010.05.045
  • Richard A, Braina DJ, Johnsona SM, Richardsb ML, Hansona HS, Monica W, Lamc CY, Scott A, Maburyc PK, Keith RS. 2004. Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aqua Oxicol 70:23–40. https://doi.org/10.1016/j.aquatox.2004.06.011
  • Sims A, Gajaraj S, Hu Z. 2013. Nutrient removal and greenhouse gas emissions in duckweed treatment ponds. Water Res 47(3):1390–1398. https://doi.org/10.1016/j.watres.2012.12.009
  • Tawfik A, Badr N, Taleb EA, El-Senousy W. 2012. Sewage treatment in an up-flow anaerobic sponge reactor followed by moving bed biofilm reactor based on polyurethane carrier material. Desalin Water Treatm 37(1–3):350–358. https://doi.org/10.1080/19443994.2012.661291
  • Trautwein C, Kümmerer K. 2012. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC–MSn and their effects on environmental bacteria. J Chromatogr B 889–890:24–38. https://doi.org/10.1016/j.jchromb.2012.01.022
  • Tront J, Reinhold D. 2007. Uptake of halogenated phenols by aquatic plants. J Environ Eng 133:955–961. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:10(955)
  • Tront JM, Saunders FM. 2006. Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere 64(1):400–407. https://doi.org/10.1016/j.chemosphere.2005.12.025
  • van der Steen P, Brenner A, Oron G. 1998. An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Sci Technol 38(1):335–343. https://doi:10.1016/S0273-1223(98)00419-3
  • Zhao Y, Fang Y, Jin Y, Huang J, Ma Z, He K, He Z, Wang F, Zhao H. 2015. Microbial community and removal of nitrogen via the addition of a carrier in a pilot-scale duckweed-based wastewater treatment system. Bioresour Technol 179:549–558. https://doi.org/10.1016/j.biortech.2014.12.037
  • Zhao Z, Huijuan S, Yang L, Hai Z, Haifeng S, Maolin W, Yun Z. 2014. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresour Technol 167:383–389. https://doi.org/10.1016/j.biortech.2014.06.031
  • Zimmo OR, van der Steen NP, Gijzen HJ. 2004. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Res 38(4):913–920. https://doi.org/10.1016/j.watres.2003.10.044
  • Zirschky J, Reed SC. 1988. The use of duckweed for waste-water treatment. J Water Pollut Contr Federat 60(1):1253–1258. http://www.jstor.org/stable/25043632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.