2,013
Views
186
CrossRef citations to date
0
Altmetric
Review paper

From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites

, , &

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere. 91:869–881. doi:10.1016/j.chemosphere.2013.01.075. PMID:23466085
  • Alkorta I, Becerril JM, Garbisu C. 2010. Phytostabilization of metal contaminated soils. Rev Environ Health. 25:135–146. doi:10.1515/REVEH.2010.25.2.135. PMID:20839558
  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C. 2004. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol. 3:55–70. doi:10.1023/B:RESB.0000040057.45006.34.
  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC. 2009a. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere. 74:1292–1300. doi:10.1016/j.chemosphere.2008.11.063.
  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC. 2009b. Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Chemosphere. 74:1301–1308. doi:10.1016/j.chemosphere.2008.11.006.
  • Arienzo M, Adamo P, Cozzolino V. 2004. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ. 319:13–25. doi:10.1016/S0048-9697(03)00435-2. PMID:14967498
  • Assunção AGL, Martins PDC, De Folter S, Vooijs R, Schat H, Aarts MGM. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24:217–226. doi:10.1111/j.1365-3040.2001.00666.x.
  • Assunção AGL, Schat H, Aarts MGM. 2003. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 159:351–360. doi:10.1046/j.1469-8137.2003.00820.x.
  • Baker AJM. 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr. 3:643–654. doi:10.1080/01904168109362867.
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G, editors. Phytoremediation of contaminated soil and water. Boca Raton (FL): Lewis Publishers; p. 85–107
  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl. 11:41–49. doi:10.1016/0921-3449(94)90077-9.
  • Bani A, Echevarria G, Sulce S, Morel JL. 2015. Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat. 17:117–127. doi:10.1080/15226514.2013.862204.
  • Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola JI, Garbisu C, Becerril JM. 2011. Native plant communities in an abandoned Pb-Zn mining area of northern Spain: implications for phytoremediation and germplasm preservation. Int J Phytoremediat. 13:256–270. doi:10.1080/15226511003753946.
  • Barrutia O, Epelde L, García-Plazaola JI, Garbisu C, Becerril JM. 2009. Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere. 74:259–264. doi:10.1016/j.chemosphere.2008.09.036. PMID:18951609
  • Barrutia O, Garbisu C, Hernández-Allica J, García-Plazaola JI, Becerril JM. 2010. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut. 158:1710–1715. doi:10.1016/j.envpol.2009.11.027. PMID:20034717
  • Bell TH, Joly S, Pitre FE, Yergeau E. 2014. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 32:271–280. doi:10.1016/j.tibtech.2014.02.008. PMID:24735678
  • Bert V, Macnair MR, de Laguerie P, Saumitou-Laprade P, Petit D. 2000. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol. 146:225–233. doi:10.1046/j.1469-8137.2000.00634.x.
  • Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P. 2007. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut. 147:546–553. doi:10.1016/j.envpol.2006.10.013. PMID:17141383
  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol. 31:860–865. doi:10.1021/es960552a.
  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL. 2006. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere. 63:811–817. doi:10.1016/j.chemosphere.2005.07.076. PMID:16213556
  • Brewer PE, Saunders AJ, Angle SJ, Chaney LR, McIntosh SM. 1999. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet. 99:761–771. doi:10.1007/s001220051295.
  • Brown SL, Chaney RL, Angle JS, Baker AJM. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J Environ Qual. 23:1151–1157. doi:10.2134/jeq1994.00472425002300060004x.
  • Brown SL, Chaney RL, Angle JS, Baker AJM. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol. 29:1581–1585. doi:10.1021/es00006a022. PMID:22276881
  • Burges A, Epelde L, Benito G, Artetxe U, Becerril JM, Garbisu C. 2016. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci Total Environ. 562:480–492. doi:10.1016/j.scitotenv.2016.04.080. PMID:27107647
  • Burges A, Epelde L, Blanco F, Becerril JM, Garbisu C. 2017. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ. 584,585:329–338. doi:10.1016/j.scitotenv.2016.12.146. PMID:28040210
  • Burges A, Epelde L, Garbisu C. 2015. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere. 120:8–15. doi:10.1016/j.chemosphere.2014.05.037. PMID:25462295
  • Clemens S, Palmgren MG, Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7:309–315. doi:10.1016/S1360-1385(02)02295-1. PMID:12119168
  • Cundy AB, Bardos RP, Church A, Puschenreiter M, Friesl-Hanl W, Müller I, Neu S, Mench M, Witters N, Vangronsveld J. 2013. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manag. 129:283–291. doi:10.1016/j.jenvman.2013.07.032.
  • Cundy AB, Bardos RP, Puschenreiter M, Mench M, Bert V, Friesl-Hanl W, Müller I, Li XN, Weyens N, Witters N, et al. 2016. Brownfields to green fields: realising wider benefits from practical contaminant phytomanagement strategies. J Environ Manag. 184:67–77. doi:10.1016/j.jenvman.2016.03.028.
  • Cunningham SD, Berti WR, Huang JWW. 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13:393–397. doi:10.1016/S0167-7799(00)88987-8.
  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual. 36:1429–1443. doi:10.2134/jeq2006.0514. PMID:17766822
  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM. 1997. Phytoremediation of soil metals. Curr Opin Biotechnol. 8:279–284. doi:10.1016/S0958-1669(97)80004-3. PMID:9206007
  • Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, et al. 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol. 46:383–389. doi:10.1016/j.apsoil.2010.10.003.
  • de-Bashan LE, Hernández J-P, Bashan Y, Maier RM. 2010. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ Exp Bot. 69:343–352. doi:10.1016/j.envexpbot.2010.04.014. PMID:25009362
  • Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P. 2016. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediat. 18:134–140. doi:10.1080/15226514.2015.1058328.
  • Doran JW, Parkin T. 1996. Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones A, editors. Methods for assessing soil quality. Madison (WI): Soil Science Society of America; p. 25–37
  • Doran JW, Zeiss MR. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol. 15:3–11. doi:10.1016/S0929-1393(00)00067-6.
  • Eapen S, D'Souza SF. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv. 23:97–114. doi:10.1016/j.biotechadv.2004.10.001. PMID:15694122
  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV. 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual. 26:1424–1430. doi:10.2134/jeq1997.00472425002600050032x.
  • Epelde L, Becerril JM, Alkorta I, Garbisu C. 2009a. Heavy metal phytoremediation: microbial indicators of soil health for the assessment of remediation efficiency. In: Singh A, Kuhad CR, Ward PO, editors. Advances in applied bioremediation. Berlin, Heidelberg: Springer. p. 299–313
  • Epelde L, Becerril JM, Alkorta I, Garbisu C. 2014a. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters. Int J Phytoremediat. 16:971–981. doi:10.1080/15226514.2013.810578.
  • Epelde L, Becerril JM, Kowalchuk GA, Deng Y, Zhou JZ, Garbisu C. 2010. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Appl Environ Microbiol. 76:7843–7853. doi:10.1128/AEM.01045-10. PMID:20935131
  • Epelde L, Becerril JM, Mijangos I, Garbisu C. 2009b. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J Environ Qual. 38:2041–2049. doi:10.2134/jeq2009.0006.
  • Epelde L, Burges A, Mijangos I, Garbisu C. 2014b. Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Appl Soil Ecol. 75:1–12. doi:10.1016/j.apsoil.2013.10.003.
  • Ernst WHO. 2005. Phytoextraction of mine wastes – options and impossibilities. Chem Erde Geochem. 65:29–42. doi:10.1016/j.chemer.2005.06.001.
  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ. 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol. 20:1019–1028. doi:10.1007/BF00028889. PMID:1463837
  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R. 2010. Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ. 136:49–58. doi:10.1016/j.agee.2009.11.007.
  • French CJ, Dickinson NM, Putwain PD. 2006. Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut. 141:387–395. doi:10.1016/j.envpol.2005.08.065. PMID:16271426
  • Garbisu C, Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77:229–236. doi:10.1016/S0960-8524(00)00108-5. PMID:11272009
  • Garbisu C, Alkorta I, Epelde L. 2011. Assessment of soil quality using microbial properties and attributes of ecological relevance. Appl Soil Ecol. 49:1–4. doi:10.1016/j.apsoil.2011.04.018.
  • Gasic K, Korban SS. 2007. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol. 64:361–369. doi:10.1007/s11103-007-9158-7. PMID:17390107
  • Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169:30–39. doi:10.1016/j.micres.2013.09.009. PMID:24095256
  • Gohre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 223:1115–1122. doi:10.1007/s00425-006-0225-0. PMID:16555102
  • Gómez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C. 2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223:3249–3262. doi:10.1007/s11270-012-1106-8.
  • Goss MJ, Tubeileh A, Goorahoo D. 2013. A review of the use of organic amendments and the risk to human health. Adv Agron Volume. 120:275–379
  • Greger M, Landberg T. 1999. Use of willow in phytoextraction. Int J Phytoremediat. 1:115–123. doi:10.1080/15226519908500010.
  • Greger M, Landberg T. 2015. Novel field data on phytoextraction: pre-cultivation with Salix reduces cadmium in wheat grains. Int J Phytoremediat. 17:917–924. doi:10.1080/15226514.2014.1003785.
  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA. 95:7220–7224. doi:10.1073/pnas.95.12.7220. PMID:9618566
  • Gutiérrez L, Garbisu C, Ciprian E, Becerril JM, Soto M, Etxebarria J, Madariaga JM, Antigüedad I, Epelde L. 2015. Application of ecological risk assessment based on a novel TRIAD-tiered approach to contaminated soil surrounding a closed non-sealed landfill. Sci Total Environ. 514:49–59. doi:10.1016/j.scitotenv.2015.01.103. PMID:25659305
  • Hammer D, Kayser A, Keller C. 2003. Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag. 19:187–192. doi:10.1111/j.1475-2743.2003.tb00303.x.
  • Hammer D, Keller C. 2003. Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manag. 19:144–149. doi:10.1079/SUM2002182.
  • Hernández-Allica J, Becerril JM, Zarate O, Garbisu C. 2006. Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil. 281:147–158. doi:10.1007/s11104-005-4081-7.
  • Herzig R, Nehnevajova E, Pfistner C, Schwitzguebel JP, Ricci A, Keller C. 2014. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland. Int J Phytoremediat. 16:735–754. doi:10.1080/15226514.2013.856846.
  • Hu Y, Nan Z, Jin C, Wang N, Luo H. 2014. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Int J Phytoremediat. 16:482–495. doi:10.1080/15226514.2013.798616.
  • Huang JW, Chen J, Berti WR, Cunningham SD. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 31:800–805. doi:10.1021/es9604828.
  • Jiang Y, Lei M, Duan L, Longhurst P. 2015. Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy. 83:328–339. doi:10.1016/j.biombioe.2015.10.013.
  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil:the use of NTA and sulfur amendments. Environ Sci Technol. 34:1778–1783. doi:10.1021/es990697s.
  • Khoudi H, Maatar Y, Brini F, Fourati A, Ammar N, Masmoudi K. 2013. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Pollut Res. 20:270–280. doi:10.1007/s11356-012-1143-2.
  • Kidd P, Mench M, Alvarez-Lopez V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Muller I, et al. 2015. Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediat. 17:1005–1037. doi:10.1080/15226514.2014.1003788.
  • Knox A, Seaman J, Adriano DC, Pierzynski G. 2000. Chemophytostabilization of metals in contaminated soils. In: Wise D, Trantolo D, Cichon E, Inyang H, Stottmeister U, editors. Bioremediation of contaminated soils. New York (NY): Marcel Dekker; p. 811–836
  • Kumar PBAN, Dushenkov V, Motto H, Raskin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol. 29:1232–1238. doi:10.1021/es00005a014. PMID:22192016
  • Kumpiene J, Bert V, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Herzig R, Janssen J, Kidd P, Mench M, et al. 2014. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Sci Total Environ. 496:510–522. doi:10.1016/j.scitotenv.2014.06.130. PMID:25108253
  • Kumpiene J, Guerri G, Landi L, Pietramellara G, Nannipieri P, Renella G. 2009. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicol Environ Saf. 72:115–119. doi:10.1016/j.ecoenv.2008.07.002. PMID:18692241
  • Kupper H, Lombi E, Zhao FJ, McGrath SP. 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta. 212:75–84. doi:10.1007/s004250000366. PMID:11219586
  • Langer I, Santner J, Krpata D, Fitz WJ, Wenzel WW, Schweiger PF. 2012. Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration. Plant Soil. 355:283–297. doi:10.1007/s11104-011-1098-y.
  • Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J. 2003. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol. 37:1463–1468. doi:10.1021/es0208963.
  • Llugany M, Miralles R, Corrales I, Barceló J, Poschenrieder C. 2012. Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J Geochem Explor. 123:122–127. doi:10.1016/j.gexplo.2012.06.016.
  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP. 2002a. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128:1359–1367. doi:10.1104/pp.010731.
  • Lombi E, Zhao FJ, Zhang GY, Sun B, Fitz W, Zhang H, McGrath SP. 2002b. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut. 118:435–443. doi:10.1016/S0269-7491(01)00294-9.
  • Luo S-L, Chen L, Chen J-L, Xiao X, Xu T-Y, Wan Y, Rao C, Liu C-B, Liu Y-T, Lai C, et al. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 85:1130–1138. doi:10.1016/j.chemosphere.2011.07.053. PMID:21868057
  • Luo CL, Shen ZG, Li XD. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59:1–11. doi:10.1016/j.chemosphere.2004.09.100. PMID:15698638
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature. 409:579. doi:10.1038/35054664. PMID:11214308
  • Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29:248–258. doi:10.1016/j.biotechadv.2010.12.001. PMID:21147211
  • Madejón E, Pérez-de-Mora A, Felipe E, Burgos P, Cabrera F. 2006. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut. 139:40–52. doi:10.1016/j.envpol.2005.04.034. PMID:16005126
  • Mani D, Kumar C. 2014. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol. 11:843–872. doi:10.1007/s13762-013-0299-8.
  • Mani D, Sharma B, Kumar C, Balak S. 2013. Depth-wise distribution, mobility and naturally occurring glutathione based phytoaccumulation of cadmium and zinc in sewage-irrigated soil profiles. Int J Environ Sci Technol. 10:1167–1180. doi:10.1007/s13762-012-0121-z.
  • Marmiroli M, Imperiale D, Maestri E, Marmiroli N. 2013. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study. Chemosphere. 93:1333–1344. doi:10.1016/j.chemosphere.2013.07.065. PMID:23981839
  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A. 2011a. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol. 31:1319–1334. doi:10.1093/treephys/tpr090.
  • Marmiroli M, Visioli G, Maestri E, Marmiroli N. 2011b. Correlating SNP genotype with the phenotypic response to exposure to cadmium in Populus spp. Environ Sci Technol. 45:4497–4505. doi:10.1021/es103708k.
  • Marques APGC, Rangel AOSS, Castro PML. 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol. 39:622–654. doi:10.1080/10643380701798272.
  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat. 11:251–267. doi:10.1080/15226510802432678.
  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD. 2007a. Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil. 290:157–172. doi:10.1007/s11104-006-9149-5.
  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD. 2007b. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut. 150:363–372. doi:10.1016/j.envpol.2007.01.021.
  • Mench M, Lepp N, Bert V, Schwitzguébel J-P, Gawronski SW, Schröder P, Vangronsveld J. 2010. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soil Sediment. 10:1039–1070. doi:10.1007/s11368-010-0190-x.
  • Menzies NW, Donn MJ, Kopittke PM. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut. 145:121–130. doi:10.1016/j.envpol.2006.03.021. PMID:16777287
  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguebel JP. 2007. Chemical mutagenesis–a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytoremediat. 9:149–165. doi:10.1080/15226510701232880.
  • Oldeman LR, Hakkeling RTA, Sombroek WG. 1991. World map of the status of human-induced soil degradation: an explanatory note. Wageningen: UNEP and ISRIC. ISBN 90-6672-046-8.
  • Pandey VC, Bajpai O, Singh N. 2016. Energy crops in sustainable phytoremediation. Renew Sustainable Energy Rev. 54:58–73. doi:10.1016/j.rser.2015.09.078.
  • Pandey VC, Singh K, Singh JS, Kumar A, Singh B, Singh RP. 2012. Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sustainable Energy Rev. 16:2870–2883. doi:10.1016/j.rser.2012.02.004.
  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA. 97:4956–4960. doi:10.1073/pnas.97.9.4956. PMID:10781104
  • Pérez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P, Schloter M. 2006. Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem. 38:327–341. doi:10.1016/j.soilbio.2005.05.010.
  • Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC. 2014. Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci. 33:1–19. doi:10.1080/07352689.2014.847616.
  • Pulford ID, Riddell-Black D, Stewart C. 2002. Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediat. 4:59–72. doi:10.1080/15226510208500073.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int. 29:529–540. doi:10.1016/S0160-4120(02)00152-6. PMID:12705950
  • Puschenreiter M, Stöger G, Lombi E, Horak O, Wenzel WW. 2001. Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sci. 164:615–621. doi:10.1002/1522-2624(200112)164:6%3c615::AID-JPLN615%3e3.0.CO;2-6.
  • Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol. 8:221–226. doi:10.1016/S0958-1669(97)80106-1. PMID:9079727
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V. 1997. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor. 59:75–86. doi:10.1016/S0375-6742(97)00010-1.
  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH. 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil. 203:47–56. doi:10.1023/A:1004328816645.
  • Ruiz-Olivares A, Carrillo-Gonzalez R, González-Chavez MC, Soto Hernandez RM. 2013. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag. 114:316–323. doi:10.1016/j.jenvman.2012.10.023.
  • Rutgers M, van Wijnen HJ, Schouten AJ, Mulder C, Kuiten AMP, Brussaard L, Breure AM. 2012. A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Sci Total Environ. 415:39–48. doi:10.1016/j.scitotenv.2011.04.041. PMID:21704358
  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J. 2006. Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut. 144:524–532. doi:10.1016/j.envpol.2006.01.038. PMID:16542762
  • Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I. 1995. Phytoremediation – a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13:468–474
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49:643–668
  • Schroder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J. 2008. Bioenergy to save the world. Producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res Int. 15:196–204 PMID:18504837
  • Schwartz C, Echevarria G, Morel JL. 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil. 249:27–35. doi:10.1023/A:1022584220411.
  • Seth CS. 2012. A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev. 78:32–62. doi:10.1007/s12229-011-9092-x.
  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. 2011. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35:334–346. doi:10.1111/j.1365-3040.2011.02338.x. PMID:21486307
  • Smith RAH, Bradshaw AD. 1979. The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol. 16:595–612. doi:10.2307/2402534.
  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol. 21:914–919. doi:10.1038/nbt850. PMID:12872132
  • Sung M, Lee C-Y, Lee S-Z. 2011. Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. J Hazard Mater. 190:744–754. doi:10.1016/j.jhazmat.2011.03.113. PMID:21531509
  • Touceda-González M, Álvarez-López V, Prieto-Fernández Á, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS. 2017. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag. 186, Part 2:301–313. doi:10.1016/j.jenvman.2016.09.019.
  • Vamerali T, Bandiera M, Lucchini P, Dickinson NM, Mosca G. 2014. Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur J Agron. 53:56–66. doi:10.1016/j.eja.2013.11.008.
  • Vamerali T, Bandiera M, Mosca G. 2009. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett. 8:1–17
  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119:1047–1055. doi:10.1104/pp.119.3.1047. PMID:10069843
  • van Liedekerke M, Prokop G, Rabl-Berger S, Kibblewhite M, Louwagie G. 2014. Progress in the Management of Contaminated Sites in Europe. Luxembourg: Joint Research Centre, European Comission. doi:10.2788/4658.
  • Van Oosten MJ, Maggio A. 2015. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot. 111:135–146. doi:10.1016/j.envexpbot.2014.11.010.
  • Van Slycken S, Witters N, Meiresonne L, Meers E, Ruttens A, Van Peteghem P, Weyens N, Tack FM, Vangronsveld J. 2013. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int J Phytoremediat. 15:677–689. doi:10.1080/15226514.2012.723070.
  • Vangronsveld J, Colpaert JV, Van Tichelen KK. 1996. Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut. 94:131–140. doi:10.1016/S0269-7491(96)00082-6. PMID:15093499
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. 16:765–794. doi:10.1007/s11356-009-0213-6.
  • Velasquez E, Lavelle P, Andrade M. 2007. GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem. 39:3066–3080. doi:10.1016/j.soilbio.2007.06.013.
  • Wan X, Lei M, Chen T. 2016. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ. 563–564:796–802. doi:10.1016/j.scitotenv.2015.12.080. PMID:26765508
  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil. 249:83–96. doi:10.1023/A:1022516929239.
  • Whiting SN, de Souza MP, Terry N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol. 35:3144–3150. doi:10.1021/es001938v. PMID:11505990
  • Whiting SN, Leake JR, McGrath SP, Alan JMB. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145:199–210. doi:10.1046/j.1469-8137.2000.00570.x.
  • Williams LE, Pittman JK, Hall JL. 2000. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta. 1465:104–126. doi:10.1016/S0005-2736(00)00133-4. PMID:10748249
  • Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J. 2012. Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy. 39:454–469
  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater. 174:1–8. doi:10.1016/j.jhazmat.2009.09.113. PMID:19864055
  • Yang Q, Tu S, Wang G, Liao X, Yan X. 2012. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediat. 14:89–99. doi:10.1080/15226510903567471.
  • Ye M, Sun M, Liu Z, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X. 2014. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manag. 141:161–168. doi:10.1016/j.jenvman.2014.03.025.
  • Zhao FJ, Lombi E, Breedon T, McGrath SP. 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 23:507–514. doi:10.1046/j.1365-3040.2000.00569.x.
  • Zhao FJ, Lombi E, McGrath SP. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 249:37–43. doi:10.1023/A:1022530217289.
  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N. 1999b. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119:73–80. doi:10.1104/pp.119.1.73.
  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N. 1999a. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121:1169–1178. doi:10.1104/pp.121.4.1169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.