429
Views
4
CrossRef citations to date
0
Altmetric
Articles

Phycoremediation resultant lipid production and antioxidant changes in green microalgae Chlorella Sp.

ORCID Icon, &

References

  • Aebi H. 1984. Catalase in-vitro. Methods Enzymol. 105:121–126. doi:10.1016/S0076-6879(84)05016-3.
  • Agarwala SC, Kumar A. 1962. The effect of heavy metals and bicarbonate excess on sunflower plants grown in sand culture with special reference to catalase peroxidase. J Ind Bot Soc. 41:72–77.
  • Ajayan KV, Selvaraju M. 2011. Reflector based chlorophyll production by spirulina platensis through energy save mode. Bioresour Technol. 102:7591–7594. doi:10.1016/j.biortech.2011.05.013.
  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P. 2015. Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytorem. 17:907–916. doi:10.1080/15226514.2014.989313.
  • Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 53:1331–1341. doi:10.1093/jexbot/53.372.1331.
  • Altaf MM, Masood F, Malik A. 2008. Impact of long term application of treated tannery effluent on the emergence of resistance traits in Rhizobium sp. Isolated from Trifolium alexandrium. Turk J Biol. 32:1–8.
  • APHA (American Public Health Association). 2005. Standard methods for the examination of water and wastewater, Washington.
  • Balaji S, Kalaivani T, Rajasekaran C, Shalini M, Vinodhini S, Sunitha Priyadharshini S, Vidya AG. 2015. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamil Nadu by Arthrospira (Spirulina) platensis. Environ Monit Assess. 187:325. doi:10.1007/s10661-015-4440-7.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assay and an assay applicable to acrylamide gels. Anal Biochem. 44:276–87. doi:10.1016/0003-2697(71)90370-8.
  • Behrens PW, Kyle DJ. 1996. Microalgae as a source of fatty acids. J Food Lipids. 3:259–272. doi:10.1111/j.1745-4522.1996.tb00073.x.
  • Chokshi K, Pancha I, Ghosh A, Mishra S. 2017. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuel. 10:60. doi:10.1186/s13068-017-0747-7.
  • De-Bashan LE, Moreno M, Hernandez J, Bashan Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 36:2941–2948. doi:10.1016/S0043-1354(01)00522-X.
  • Debelius B, Forja JM, DelValls A, Lubian LM. 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Safety. 72:1503–1513. doi:10.1016/j.ecoenv.2009.04.006.
  • Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling. Plant Physiol. 141:330–335. doi:10.1104/pp.106.078204.
  • Dickinson KE, Whitney CG, Mc Ginn PJ. 2013. Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res. 2127–34.
  • Dietz KJ, Bair M, Kramer U. 1999. Free radicals and reactive oxygen species as mediators of heavy metals toxicity in plants. In: Prasad, MNV, Hagemeyer, J, editors. Heavy metal stress in plants: from molecules to ecosystems. Berlin, Germany: Springer-Verlag.
  • Dittmer J, Wells MA. 1969. Quantitative and qualitative analysis of lipid and lipid components. Methods Enzymol. 14:482–530. doi:10.1016/S0076-6879(69)14055-0.
  • Doshi H, Seth C, Ray A, Kothari LL. 2008. Bioaccumulation of heavy metals by green algae. Curr Microbiol. 56:246–255. doi:10.1007/s00284-007-9070-z.
  • Franco Ar, Calheiros CSC, Pacheco CC, Marco P, Manaia CM, Castro PML. 2005. Isolation and characterization of polymeric Galloyl- Ester- degrading bacteria from a tannery discharge place. Microbial Ecol. 50:550–556. doi:10.1007/s00248-005-5020-0.
  • Garg N, Manchanda G. 2009. ROS generation in plants: boon or bane? Plant Biosys. 143:81–96. doi:10.1080/11263500802633626.
  • Guidotti TL, Namara MJ, Mosses MS. 2008. The interpretation of trace element analysis in body fluids. Ind J Med Res. 128:524–532.
  • Hagemeyer J 1999. Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV, Hagemeyer J, editors. Heavy metal stress in plants. Berlin, Germany: Springer, pp. 157–81.
  • Halliwell B, Gutteridge JMC. 1999. Free radicals in biology and medicine, 3rd ed. New York (NY): Oxford University Press.
  • Hammouda O, Gaber A, Abdel-Raouf N. 1994. Microalgae and wastewater treatment. Ecotoxicol Environ Saf. 31:205–210. doi:10.1006/eesa.1995.1064.
  • Heath RL, Parker L. 1968. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 25:189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacyglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x.
  • Hu Q 2004. Environmental effects on cell composition. In: Richmond A, editors. Handbook of microalgal culture: biotechnology and applied phycology, Oxford, UK: Blackwell Science Ltd.
  • Lombardi AT, Vieira AVH, Sartori LA. 2002. Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J Phycol. 38:332–337. doi:10.1046/j.1529-8817.2002.00126.x.
  • Malik A 2004. Metal bioremediation through growing cells. Environ Int. 30:261–278. doi:10.1016/j.envint.2003.08.001.
  • Mehta SK, Tripathi BN, Gaur JP. 2000. Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris. Eur J Protistol. 36:443–450. doi:10.1016/S0932-4739(00)80050-4.
  • Mishra BB, Nanda DR. 1997. Reclamation with cyanobacteria: toxic effect of mercury contaminated waste soil on biochemical variables. Cytobios. 92:203–208.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22:867–880.
  • Olguin EJ 2003. Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv. 22:81–91. doi:10.1016/S0734-9750(03)00130-7.
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Rio LA. 2002. Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem. 40:521–530. doi:10.1016/S0981-9428(02)01404-3.
  • Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A. 2015. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 189:341–348. doi:10.1016/j.biortech.2015.04.017.
  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P. 2003. Heavy metal-induced oxidative stress in algae. J Phycol. 39:1008–1018. doi:10.1111/j.0022-3646.2003.02-193.x.
  • Rijstenbil JW, Gerringa LJA. 2002. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat Toxicol. 56:115–1131. doi:10.1016/S0166-445X(01)00188-6.
  • Shashirekha V, Pandi M, Mahadeswara S. 2005. Bioremediation of tannery effluent and chromium containing wastes using cyanobacterial species. J Amer Leather Chem Asso. 11:419–426.
  • Shashirekha V, Sridharan MR, Mahadeswara S. 2011. Bioremediation of tannery effluents using a consortium of blue–green algal species. Clean – Soil Air Water. 39:863–873. doi:10.1002/clen.201000548.
  • Soyaslan I, Karaguazel R. 2007. Investigation of water pollution in the yalvac basin into egirdir lake. Turk Environ Geol. 55:1263–1268. doi:10.1007/s00254-007-1074-2.
  • Strickland JDH, Parsons TR. 1972. A practical handbook of seawater analysis. 2nd ed., Bull. Fish. Res. Bd. Can. Bull.(2nd Ed.) 167:1–326.
  • Wang L, Li Y, Chen P. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresourc Technol. 101(8):2623–2628. doi:10.1016/j.biortech.2009.10.062.
  • Yadavalli R, Rao CS, Rao RS, Potumarthi R. 2014. Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. Asia-Pacific J Chem Eng. 9:368–373. doi:10.1002/apj.1805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.