104
Views
5
CrossRef citations to date
0
Altmetric
Articles

Phytofiltration of As3+, As5+, and Hg by the aquatic macrophyte Potamogeton pusillus L, and its potential use in the treatment of wastewater

, &

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere. 91:869–881. doi:10.1016/j.chemosphere.2013.01.075. PMID:23466085.
  • Alvarado S, Guédez M, Lué-Merú MP, Graterol N, Anzalone A, Arroyo CJ, Gyula Z. 2008. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol. 99:8436–8440. doi:10.1016/j.biortech.2008.02.051. PMID:18442903.
  • Azizur Rahman M, Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere. 83:633–646. doi:10.1016/j.chemosphere.2011.02.045. PMID:21435676.
  • Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 55:141–146. doi:10.1016/j.chemosphere.2003.11.015. PMID:14720557.
  • Bernier M, Carpentier R. 1995. The action of mercury on the binding of the extrinsic polypeptides associated with the water oxidizing complex of photosystem II. FEBS Lett. 360:251–254. doi:10.1016/0014-5793(95)00101-E. PMID:7883042.
  • Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3. PMID:942051.
  • Cargnelutti D, Almeri Tabaldi L, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Blanco Linares CE, Luiz Dressler V, de Moraes Flores EM, Teixeira NicolosoF, et al. 2006. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere. 65:999–1006. doi:10.1016/j.chemosphere.2006.03.037. PMID:16674986.
  • Demirezen D, Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 56:685–696. doi:10.1016/j.chemosphere.2004.04.011. PMID:15234165.
  • Favas PJC, Pratas J, Prasad MNV. 2012. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ. 433:390–397. doi:10.1016/j.scitotenv.2012.06.091. PMID:22820614.
  • Islam MS, Saito T, Kurasaki M. 2015. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism. Ecotoxicol Environ Saf. 112:193–200 doi:10.1016/j.ecoenv.2014.11.006. PMID:25463871.
  • Lesage E, Mundia C, Rosseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauw N, Verloo MG. 2007. Sorption of Co, Cu, Ni, and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng. 30:320–325. doi:10.1016/j.ecoleng.2007.04.007.
  • Malar S, Sahi SV, Favas PJC, Venkatachalam P. 2015. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res. 22:4597–4608. doi:10.1007/s11356-014-3576-2.
  • Mishra VK, Upadhyay AR, Pathak V, Tripathi BD. 2008. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring. Water Air Soil Pollut. 192:303–314. doi:10.1007/s11270-008-9657-4.
  • Monferran MV, Agudo JAS, Pignata ML, Wunderlin D. 2009. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut. 157:2570–2576. doi:10.1016/j.envpol.2009.02.034. PMID:19324479.
  • Monferran MV, Pignata ML, Wunderlin DA. 2012. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper. Environ Pollut. 161:15–22. doi:10.1016/j.envpol.2011.09.032. PMID:22230062.
  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH. 2008. Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot. 62:78–85. doi:10.1016/j.envexpbot.2007.07.007.
  • Moreno-Jiménez E, Esteban E, Carpena-Ruiz RO, Peñalosa JM. 2009. Arsenic- and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotoxicol Environ Saf. 72:1781–1789. doi:10.1016/j.ecoenv.2009.04.022. PMID:19477520.
  • Peng K, Luo CH, Lou L, Li X, Shen Z. 2008. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malainus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ. 392:22–29. doi:10.1016/j.scitotenv.2007.11.032. PMID:18178241.
  • Pisani T, Munzi S, Paoli L, Backor M, Loppi S. 2011. Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere. 82:963–969. doi:10.1016/j.chemosphere.2010.10.079.
  • Qian JH, Zayed A, Zhu ML, Yu M, Terry N. 1999. Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J. Environ. Qual. 28(5):1448–1455. doi:10.2134/jeq1999.00472425002800050009x.
  • Rahman MA, Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere. 83:633–646. doi:10.1016/j.chemosphere.2011.02.045. PMID:21435676.
  • Regier N, Larras F, Garcia Bravo A, Ungureanu VG, Amouroux D, Cosio C. 2013. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters. Chemosphere. 90:595–602. doi:10.1016/j.chemosphere.2012.08.043. PMID:23021383.
  • Rengel Z. 1989. Uptake of cations by annual ryegrass as related to cations adsorbed onto root exchange sites. J Plant Nutr. 12:839–858. doi:10.1080/01904168909363997.
  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyaba H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazar Mater. 318:587–599. doi:10.1016/j.jhazmat.2016.07.053.
  • Robinson B, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Bolan N, Mahimairaja S. 2005. Arsenic accumulation by aquatic and terrestrial plants. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P, editors. Managing arsenic in the environment: from Ssil to human health. Collingwood: CSIRO. p. 235–247.
  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K. 2011. Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean: Soil Air Water. 39:735–741.
  • Samecka-Cymerman RB, Kempers AJ. 1996. Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicol. Environ. Saf. 35:242–247. doi:10.1006/eesa.1996.0106. PMID:9007000.
  • Skinner K, Wright N, Porter-Goff E. 2007. Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut. 145:234–237. doi:10.1016/j.envpol.2006.03.017. PMID:16781033.
  • Teles Gomes MV, Rodrigues de Souza R, Silva Teles V, Araújo Mendes E. 2014. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. 103:228–233. doi:10.1016/j.chemosphere.2013.11.071. PMID:24369743.
  • Xylander M, Hagen C, Braune W. 1996. Mercury increases light susceptibility in the green alga Haematococcus lacustris. Bot. Acta. 109:222–228. doi:10.1111/j.1438-8677.1996.tb00567.x.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368:456–464. doi:10.1016/j.scitotenv.2006.01.016. PMID:16600337.
  • Zhang X, Hu Y, Liu Y, Chen B. 2011. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci. 23(4):601–606. doi:10.1016/S1001-0742(10)60454-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.