148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead

, , , , , , & show all

References

  • Adamis PDB, Mannarino SC, Eleutherio ECA. 2009. Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium–glutathione complex. Febs Lett. 583:1489–1492. doi:10.1016/j.febslet.2009.03.066. PMID:19345220.
  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH. 2010. Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil. 326:171–185. doi:10.1007/s11104-009-9992-2.
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV. 2012. Modulation of glutathione and its related enzymes in plants responses to toxic metals and metalloids—A review. Environ Exp Bot. 75:307–324.
  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR. 2011. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tiss Organ Cult. 107:69–77. doi:10.1007/s11240-011-9958-y.
  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol. 31:860–865. doi:10.1021/es960552a.
  • Cai Y, Cao FB, Cheng WD, Zhang GP, Wu FB. 2011. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res. 143:1159–1173. doi:10.1007/s12011-010-8929-1. PMID:21191821.
  • Chao YY, Hsu TY, Kao HC. 2009. Involvement of glutathione in heat shock- and hydrogen peroxide-induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Soil. 318:37–45. doi:10.1007/s11104-008-9815-x.
  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M. 2010. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem. 48:663–672. doi:10.1016/j.plaphy.2010.05.001. PMID:20605723.
  • Clemens S. 2006. Evolution and function of phytochelatin synthases. J Plant Physiol. 163:319–332. doi:10.1016/j.jplph.2005.11.010. PMID:16384624.
  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamyl cysteine synthetase expression. Nat Biotechnol. 20:1140–1145. doi:10.1038/nbt747. PMID:12368812.
  • Eren E, Arguello JM. 2004. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol. 136:3712–3723. doi:10.1104/pp.104.046292. PMID:15475410.
  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell. 16:2176–2191. doi:10.1105/tpc.104.023036. PMID:15269333.
  • Frendo P, Baldacci-Cresp F, Benyamina SM, Puppo M. 2013. Glutathione and plant response to the biotic environment. Free Rad Biol Med. 65:724–730. doi:10.1016/j.freeradbiomed.2013.07.035. PMID:23912161.
  • Griffith OW, Meister A. 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 254:7558–7560. PMID:38242.
  • Grill E, Loffler S, Winnacker E, Zenk MH. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamyl cysteine dipeptidyl transferase (phytochelatin synthase). Proc Nat Acad Sci Am. 86:6838–6842. doi:10.1073/pnas.86.18.6838.
  • Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ. 2014. Overexpression of Iris. lactea var. chinensis metallothionein IlMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol Environ Safety. 105:22–28. doi:10.1016/j.ecoenv.2014.04.002. PMID:24780229.
  • Gupta DK, Huang HG, Corpas FJ. 2013. Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res. 20:2150–2161. doi:10.1007/s11356-013-1485-4.
  • Han YL, Huang SZ, Gu JG, Qiu S, Chen JM. 2008. Tolerance and accumulation of lead by species of Iris L. Ecotoxicology. 17:853–859. doi:10.1007/s10646-008-0248-3. PMID:18651215.
  • Hoagland, D.R., Arnon, D.I. 1950. The water-culture method for growing plants without soil. California Agri. Exp. Station Circ. 347:1–32.
  • Huang BF, Xin JL, Liu AQ, Liao KB. 2012. Uptake and translocation of Cd and Pb in four water spinach cultivars differing in shoot and root Cd and Pb concentrations. Pol J Environ Stud. 21:1211–1215.
  • Huang JW, Chen J, Berti WR, Cunningham SD. 1997. Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 31:800–805. doi:10.1021/es9604828.
  • Israr M, Jewell A, Kumar D, Sahi SV. 2011. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater. 186:1520–1526. doi:10.1016/j.jhazmat.2010.12.021. PMID:21216094.
  • Jabeen R, Ahmad A, Iqbal M. 2009. Phytoremediation of heavy metals: physiological and molecular mechanisms plants growing in contaminated soils. Bot Rev. 75:339–364. doi:10.1007/s12229-009-9036-x.
  • Jackson D, Watson A. 1977. Disruption of nutrient pools and transport of heavy metals in a forested watershed near a lead smelter. J Environ Qual. 6:331–338. doi:10.2134/jeq1977.00472425000600040001x.
  • Jiang L, Wang WY, Chen ZP, Gao QC, Xu QX, Cao HM. 2017. A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Sci. 256:94–102 doi:10.1016/j.plantsci.2016.11.015. PMID:28167043.
  • Kaur G, Kaur S, Singh HP, Batish DR, Kohli RK, Rishi V. 2015. Biochemical adaptations in Zea mays to short-term Pb2+ exposure: ROS generation and metabolism. Bull Environ Contam Toxicol. 95:246–253. doi:10.1007/s00128-015-1564-y. PMID:26048438.
  • Liu D, Islam E, Li TQ, Yang X, Jin XF, Mahmood Q. 2008. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater. 153:114–122. doi:10.1016/j.jhazmat.2007.08.026. PMID:17904736.
  • Liu Q, Luo L, Wang X, Shen Z, Zheng L. 2017. Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci. 18(2):209–224. doi:10.3390/ijms18020209.
  • Ma CX, Chhikara S, Minocha R, Long S, Musante C, White JC, Xing BS, Dhankher OP. 2015. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-Glutamylcysteine synthase. Environ Sci Technol. 49:10117–10126. doi:10.1021/acs.est.5b02007. PMID:26186015.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Safety. 126:111–121. doi:10.1016/j.ecoenv.2015.12.023. PMID:26741880.
  • Metwally A, Finkemeier I, Georgi M, Dietz JK. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 132:272–281. doi:10.1104/pp.102.018457. PMID:12746532.
  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 65:1027–1039. doi:10.1016/j.chemosphere.2006.03.033. PMID:16682069.
  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454–484. doi:10.1111/j.1365-3040.2011.02400.x. PMID:21777251.
  • Noctor G, Veljovicjovanovic S, Foyer CH. 2000. Peroxide processing inphotosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc London, Ser B. 355:1465–1475. doi:10.1098/rstb.2000.0707.
  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 52:199–223. doi:10.1016/j.envexpbot.2004.02.009.
  • Pichtel J, Kuroiwa K, Sawyerr HT. 2000. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ Pollut. 110:171–178. doi:10.1016/S0269-7491(99)00272-9. PMID:15092867.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 213:113–136. PMID:21541849.
  • Requejo R, Tena M. 2012. Influence of glutathione chemical effectors in the response of maize to arsenic exposure. J Plant Physiol. 169:649–656. doi:10.1016/j.jplph.2012.01.016. PMID:22418430.
  • Saifullah ME, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH. 2009. EDTA-assisted Pb phytoextraction. Chemosphere. 74:1279–1291. doi:10.1016/j.chemosphere.2008.11.007. PMID:19121533.
  • Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H. 2016. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populustremula x P. alba) overexpressing gsh 1. Environ Pollut. 216:773–785. doi:10.1016/j.envpol.2016.06.047. PMID:27396669.
  • Sarkar D, Andra SS, Saminathan SK, Datta R. 2008. Chelant-aided enhancement of lead mobilization in residential soils. Environ Pollut. 156:1139–1148. doi:10.1016/j.envpol.2008.04.004.
  • Sharma R, Rensing C, Rosen BP, Mitra B. 2000. The ATP hydrolytic activity of purified ZntA, A Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem. 275:3873–3878.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17:35–52. doi:10.1590/S1677-04202005000100004.
  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. 2012. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35:334–346. doi:10.1111/j.1365-3040.2011.02338.x. PMID:21486307.
  • Vadas TM, Ahner BA. 2009. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut. 157:2558–2563. doi:10.1016/j.envpol.2009.02.036. PMID:19344986.
  • Vogel-Mikus K, Drobne D, Regvar M. 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut. 133:233–242. doi:10.1016/j.envpol.2004.06.021. PMID:15519454.
  • Yuan HY, Zhang YX, Huang SZ, Yang YH, Gu CS. 2015. Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. chinensis. Environ Sci Pollut Res. 22:2808–2816. doi:10.1007/s11356-014-3535-y.
  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N. 1999a. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamyl cysteine synthetase. Plant Physiol. 121:1169–1177. doi:10.1104/pp.121.4.1169.
  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N. 1999b. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119:73–80. doi:10.1104/pp.119.1.73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.