218
Views
31
CrossRef citations to date
0
Altmetric
Articles

Exogenous melatonin improves lead tolerance of bermudagrass through modulation of the antioxidant defense system

, , , , , , , , & show all
Pages 1408-1417 | Received 19 Mar 2018, Accepted 05 Jun 2018, Published online: 17 Jan 2019

References

  • Aebi H. 1984. Catalase in vitro. Method Enzymol. 105:121–126. PMID:6727660.
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, et al. 2011. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot. 75(2012):307–324. doi: 10.1016/j.envexpbot.2011.07.002.
  • Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X. 2017. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci. 8:259. doi: 10.3389/fpls.2017.00259. PMID:28293245.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi: 10.1016/j.dental.2010.07.006. PMID:20688380.
  • Brandford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(s1-2):248–254. doi: 10.1016/0003-2697(76)90527-3. PMID:942051.
  • Chaney RL. 1983. Plant uptake of inorganic waste constituents. In: Parr, J.F.E.A, editor. Land treatment of hazardous wastes. Park Ridge (NJ): Noyes Data Corp. p. 50–76.
  • Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT, Chen H, Fan KK, Yu K, Wu X, et al. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere. 60(4):542–551. doi: 10.1016/j.chemosphere.2004.12.072. PMID:15950046.
  • Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem. 118:138–149. doi: 10.1016/j.plaphy.2017.06.014. PMID:28633086.
  • Curtis CR. 1971. Disc electrophoretic comparisons of proteins and peroxidases from Phaseolus vulgaris leaves infected with Agrobacterium tumefaciens. Can J Bot. 49(3):333–337.
  • Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135(1):1–9. doi: 10.1016/S0168-9452(98)00025-9.
  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 18:28–31. doi: 10.1111/j.1600-079X.1995.tb00136.x. PMID:7776176.
  • Flexa J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H. 2006. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172(1):73–82. doi: 10.1111/j.1469-8137.2006.01794.x. PMID:16945090.
  • Foster JG, Hess JL. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66(3):482–487. PMID:16661460.
  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W. 2015a. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere. 120: 154–164. doi: 10.1016/j.chemosphere.2014.06.029. PMID:25016339.
  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. 2015b. Superoxide dismutase–mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res Int. 22(14):10375–10394. doi: 10.1007/s11356-015-4532-5. PMID:25921757.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016. PMID:20870416.
  • Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Xu S, Wang R, Shen W. 2017. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci. 261:28–37. doi: 10.1016/j.plantsci.2017.05.001. PMID:28554691.
  • Hanjra MA, Qureshi ME. 2010. Global water crisis and future food security in an era of climate change. Food Policy. 35(5):365–377. doi: 10.1016/j.foodpol.2010.05.006.
  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M. 2017a. Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH Pathway and glyoxalase system. Front Plant Sci. 8:1061. doi: 10.3389/fpls.2017.01061. PMID:28674552.
  • Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BH, Fujita M. 2017b. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci. 8:115. doi: 10.3389/fpls.2017.00115. PMID:28239385.
  • Hu SG, Su ZJ, Jiang J, Huang WX, Liang XX, Hu JG, Chen M, Cai WH, Wang J, Zhang XW. 2015. Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China. Stoch Environ Res Risk Assess. 30(5):1379–1386. doi: 10.1007/s00477-015-1139-9.
  • Huang L, Zhang H, Song Y, Yang Y, Chen H, Tang M. 2017. Subcellular compartmentalization and chemical forms of lead participate in lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Front Plant Sci. 8:517. doi: 10.3389/fpls.2017.00517.
  • Khan I, Iqbal M, Ashraf MY, Ashraf MA, Ali S. 2016. Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). J Hazard Mater. 317:352–361. doi: 10.1016/j.jhazmat.2016.06.007. PMID:27318732.
  • Kuźniak E, Skłdowska M. 2001. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci. 160(4):723–731. doi: 10.1016/S0168-9452(00)00457-X. PMID:11448747.
  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J. 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater. 154(1-3):914–926. doi: 10.1016/j.jhazmat.2007.10.121. PMID:18162296.
  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X. 2017. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci. 8:295. doi: 10.3389/fpls.2017.00295. PMID:28298921.
  • Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J. 2016a. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res. 61(3):291–302. doi: 10.1111/jpi.12346. PMID:27264631.
  • Li X, Cen H, Chen Y, Xu S, Peng L, Zhu H, Li Y. 2016b. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides. Int J Phytoremediat. 18(3):251–260. doi: 10.1080/15226514.2015.1084994. PMID:26368658.
  • Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc T. 11(5):591–592.
  • Liu D, Zou J, Meng Q, Zou J, Jiang W. 2009. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology. 18(1):134–143. doi: 10.1007/s10646-008-0266-1. PMID:18773294
  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. 2017. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf. 144:216–226. doi: 10.1016/j.ecoenv.2017.06.010. PMID:28624590.
  • Malar S, Manikandan R, Favas PJC, Sahi SV, Venkatachalam P. 2014. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotox Environ Safe. 108:249–257. doi: 10.1016/j.ecoenv.2014.05.018. PMID:25103568.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Qi XQ, Zhang XQ, Ling Y, Liu W, Peng Y. 2011. Research progress of the Cynodondactylon germplasm in China. Pratacultural Sci. 28(3):444–448.
  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. 2016. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 61(3):253–278. doi: 10.1111/jpi.12360.PMID:27500468.
  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Del rio LA, Sandalio LM. 2004. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ. 27(9):1122–1134. doi: 10.1111/j.1365-3040.2004.01217.x.
  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C. 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf. 74(1):78–84. doi: 10.1016/j.ecoenv.2010.08.037. PMID:20851467.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012:1–26.
  • Shi H, Ye T, Chan Z. 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Bioch. 74:99–107. doi: 10.1016/j.plaphy.2013.11.001. PMID:24291156.
  • Shi HT, Wang X, Tan DX, Reiter RJ, Chan ZL. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers J 59:120–131. doi: 10.1093/jxb/eru373. PMID:25225478.
  • Song H, Xu X, Wang H, Wang H, Tao Y. 2010. Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric. 90(9):1410–1416. doi: 10.1002/jsfa.3951. PMID:20549790.
  • Szafranska K, Reiter RJ, Posmyk MM. 2017. Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Front Plant Sci. 8:878. doi: 10.3389/fpls.2017.00878. PMID:28611801.
  • Tang Y, Lin L, Xie Y, Liu J, Sun G, Li H, Liao M, Wang Z, Liang D, Xia H et al. 2017. Melatonin affects the growth and cadmium accumulation of Malachium aquaticum and Galinsoga parviflora. Int J Phytoremed. 20(4):295–300. doi: 10.1080/15226514.2017.1374341. PMID:29053350.
  • Verma S, Dubey RS. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164(4):645–655. doi: 10.1016/S0168-9452(03)00022-0.
  • Wang Q, An B, Shi H, Luo H, He C. 2017. High concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis. Int J Mol Sci. 18(5):991. doi: 10.3390/ijms18050991. PMID:28475148.
  • Wang Q, An B, Wei Y, Reiter RJ, Shi H, Luo H, He C. 2016. Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci. 7:1882. doi: 10.3389/fpls.2016.01882. PMID:28018411.
  • Yin LH, Wang P, Li MJ, Ke XW, Li CY, Liang D, Wu S, Ma XL, Li C, Zou YJ, et al. 2013. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res. 54:426–434. doi: 10.1111/jpi.12038. PMID:23356947.
  • Zhang J, Li H, Xu B, Li J, Huang B. 2016. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Front Plant Sci. 7:1500. doi: 10.3389/fpls.2016.01500. PMID:27761136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.