431
Views
18
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities

ORCID Icon, & ORCID Icon
Pages 316-324 | Received 10 Oct 2017, Accepted 11 Sep 2018, Published online: 16 Jan 2019

References

  • Adam G, Duncan H. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem. 33(7–8):943–951. doi:10.1016/S0038-0717(00)00244-3.
  • Araki N, Niikura Y, Miyauchi K, Kasai D, Masai E, Fukuda M. 2011. Glucose-mediated transcriptional repression of PCB/biphenyl catabolic genes in Rhodococcus jostii RHA1. J Mol Microbiol Biotechnol. 20(1):53–62. doi:10.1159/000323509.
  • Cabrerizo A, Dachs J, Moeckel C, Ojeda MJ, Caballero G, Barceló D, Jones KC. 2011. Factors influencing the soil–air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environ Sci Technol. 45(11):4785–4792. doi:10.1021/es200400e
  • Chekol T, Vough LR, Chaney RL. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int. 30(6):799–804. doi:10.1016/j.envint.2004.01.008.
  • Di Lenola M, Barra Caracciolo A, Grenni P. 2018. Effects of apirolio addition and alfalfa and compost treatments on the natural microbial community of a historically PCB-contaminated soil. Water Air Soil Pollut. 229:143. doi.org/10.1007/s11270-018-3803-4. doi:10.1007/s11270-018-3803-4
  • Ding N, Guo H, Hayat T, Wu Y, Xu J. 2009. Microbial community structure changes during Aroclor 1242. FEMS Microbiol Ecol. 70(2):305–314. doi:10.1111/j.1574-6941.2009.00742.x
  • Ficko SA, Rutter A, Zeeb BA. 2010. Potential for phytoextraction of PCBs from contaminated soils using weeds. Sci Total Environ. 408(16):3469–3476. doi:10.1016/j.scitotenv.2010.04.036
  • Gomes HI, Dias-Ferreira C, Ribeiro AB. 2013. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for fullscale application. Sci Total Environ. 445–446:237–260. doi:10.1016/j.scitotenv.2012.11.098
  • Hirsch P, Mauchline T, Clark I. 2010. Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem. 42(6):878–887. doi:10.1016/j.soilbio.2010.02.019
  • Ionescu M, Beranova K, Dudkova V, Kochankova L, Demnerova K, Macek T, Mackova M. 2009. Isolation and characterization of different plant-associated bacteria and their potential to degrade polychlorinated biphenyls. Int Biodeter Biodegr. 63(6):667–672. doi:10.1016/j.ibiod.2009.03.009
  • Jepson PD, Deaville R, Barber JL, Aguilar A, Borrell A, Murphy S, Barry J, Brownlow A, Barnett J, Berrow S. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci Rep. 6:18573. doi:10.1038/srep18573
  • Jha P, Panwar J, Jha PN. 2015. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol. 12(2):789. doi:10.1007/s13762-014-0515-1
  • Johnson GW, Bock MJ. 2014. Modeled PCB weathering series in principal components space: considerations for multivariate chemical fingerprinting. In Morrison RD, O'Sullivan G, editors. Environmental forensics. Cambridge: Royal Society of Chemistry. p. 117–124.
  • Jones D. 1998. Organic acids in the rhizosphere – a critical review. Plant Soil. 205(1):25–44. doi.org/doi:10.1023/A:1004356007312
  • Klees M, Hombrecher K, Gladtke D. 2017. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia: levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data. Sci Total Environ. 603-604:606–615. doi:10.1016/j.scitotenv.2017.06.079
  • Kurzawova V, Stursa P, Uhlik O, Norkova K, Strohalm M, Lipov J, Kochankova L, Mackova M. 2012. Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. N Biotechnol. 30(1):15–22. doi:10.1016/j.nbt.2012.06.004
  • Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K. 2013. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 14(4):287–288. doi:10.1016/S1470-2045(13)70104-9
  • Li Y, Liang F, Zhu Y, Wang F. 2013. Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soils Sediments. 13(5):925–931. doi:10.1007/s11368-012-0618-6
  • Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE. 2014. Enhanced polychlorinated biphenyl removal in a switchgrass rhizosphere by bioaugmentation with Burkholderia xenovorans LB400. Ecol Eng. 71:215–222. doi:10.1016/j.ecoleng.2014.07.046
  • Liste H, Alexander M. 2000. Plant-promoted pyrene degradation in soil. Chemosphere. 40(1):7–10. doi:10.1016/S0045-6535(99)00216-7
  • Luo W, D’Angelo EM, Coyne MS. 2007. Plant secondary metabolites, biphenyl, and hydroxypropyl-β-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils. Soil Biol Biochem. 39(3):735–743. doi:10.1016/j.soilbio.2006.09.019
  • Matsumoto R, Tu NP, Haruta S, Kawano M, Ichiro T. 2016. Analysis of all 209 polychlorinated biphenyl (PCB) congeners (with special reference to dioxin-like PCB congeners) in Japanese seabass and related species by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Reg Stud Mar Sci. 3:119–130. doi:10.1016/j.rsma.2015.06.004
  • Meggo RE, Schnoor JL, Hu D. 2013. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environ Pollut. 178:312–321. doi:10.1016/j.envpol.2013.02.035
  • Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. 2016. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. IJMS. 17(8):1205. doi:10.3390/ijms17081205.
  • Muyzer G, De Waal E, Uitterlinden A. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 59(3):695–700. doi:10.12691/jaem-2-4-5
  • Ohtsubo Y, Goto H, Nagata Y, Kudo T, Tsuda M. 2006. Identification of a response regulator gene for catabolite control from a PCB-degrading beta-proteobacteria, Acidovorax sp. KKS102. Mol Microbiol. 60(6):1563–1575. doi:10.1111/j.1365-2958.2006.05197.x
  • Paasivirta J, Sinkkonen S. 2009. Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions. J Chem Eng Data. 54(4):1189–1213. doi:10.1021/je800501h
  • Passatore L, Rossetti S, Juwarkar A, Massacci A. 2014. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater. 278:189–202. doi:10.1016/j.jhazmat.2014.05.051.
  • Pham T, Tu Y, Sylvestre M. 2012. Remarkable abilities of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl Environ Microbiol. 78(10):3560–3570. doi:10.1128/AEM.00225-12.
  • Qi ZF, Buekens A, Liu J, Chen T, Lu SY, Li XD, Cen KF. 2014. Some technical issues in managing PCBs. Environ Sci Pollut Res. 21(10):6448–6462. doi:10.1007/s11356-013-1926-0.
  • Tato L, Tremolada P, Ballabio C, Guazzoni N, Parolini M, Caccianiga M, Binelli A. 2011. Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps. Environ Pollut. 159(10):2656–2664. doi:10.1016/j.envpol.2011.05.035
  • Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, Luo Y. 2016. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int J Phytoremediation. 18(2):141–149. doi:10.1080/15226514.2015.1073667.
  • Terzaghi E, Zanardini E, Morosini C, Raspa G, Borin S, Mapelli F, Vergani L, Di Guardo A. 2018. Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Sci Total Environ. 612:544–560. doi:10.1016/j.scitotenv.2017.08.189
  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M. 2012. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol. 95(6):1589–1603. doi:10.1007/s00253-011-3824-z.
  • Tu C, Teng Y, Luo YM, Sun XH, Deng SP, Li ZG, Liu WX, Xu ZH. 2011. PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediments. 11(4):649–656. doi:10.1007/s11368-011-0344-5
  • US-EPA 2007. Method 8082A polychlorinated biphenyls (PCBs) by gas chromatography. Washington DC: U.S. Environmental Protection Agency.
  • Van A, Correa PA, Schnoor JL. 2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol. 44(8):2767–2776. doi:10.1021/es902514d.
  • Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S. 2017. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci Total Environ. 575:1395–1406. doi:10.1016/j.scitotenv.2016.09.218.
  • Vitale CM, Terzaghi E, Zati D, Di Guardo A. 2018. How good are the predictions of mobility of aged polychlorinated biphenyls (PCBs) in soil? Insights from a soil column experiment. Sci Total Environ. 645:865–875. doi:10.1016/j.scitotenv.2018.07.216
  • Xu L, Teng Y, Li Z-G, Norton JM, Luo YM. 2010. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Sci Total Environ. 408(5):1007–1013. doi:10.1016/j.scitotenv.2009.11.031.
  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ. 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int J Phytoremediation. 8(3):199–221. doi:10.1080/15226510600846749
  • Zhai G, Hu D, Lehmler H, Schnoor JL. 2011. Enantioselective biotransformation of chiral PCBs in whole poplar plants. Environ Sci Technol. 45(6):2308–2316. doi:10.1021/es1033662

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.