532
Views
22
CrossRef citations to date
0
Altmetric
Articles

Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation

, , , , &
Pages 352-363 | Received 15 Apr 2018, Accepted 31 Aug 2018, Published online: 14 Jan 2019

References

  • Amin AS, Kassem MA. 2012. Chromium speciation in environmental samples using a solid phase spectrophotometric method. Spectrochim Acta A Mol Biomol Spectrosc. 96:541–547. doi:10.1016/j.saa.2012.05.020
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1
  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Li D, Mahmood T. 2017. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediation. 19(7):605–613. doi:10.1080/15226514.2016.1256372
  • Awokunmi EE. 2016. The potential of Abelmoschus esculentus in EDTA-assisted phytoextraction of heavy metals from soil of Bashiri dumpsite, Ado Ekiti, Nigeria. Int J Environ Prot. 6(1):72–77. doi:10.5963/IJEP0601002
  • Bluskov S, Arocena JM, Omotoso OO, Young JP. 2005. Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremed. 7(2):153–165. doi:10.1080/16226510590950441
  • Butera S, Trapp S, Astrup TF, Christensen TH. 2015. Soil retention of hexavalent chromium released from construction and demolition waste in a road-base application scenario. J Hazard Mater. 298:361–367. doi:10.1016/j.jhazmat.2015.06.025
  • Chen NC, Kanazawa S, Horiguchi T. 2001. Effect of chromium on some enzyme activities in the wheat rhizosphere. Soil Microorg. 55(1):3–10. doi:10.18946/jssm.55.1_3
  • Ciura J, Poniedziałek M, Sekara A, Jedrszczyk E. 2005. The possibility of using crops as metal phytoremediants. Pol J Environ Stud. 14(1):17–22. http://www.pjoes.com/The-Possibility-of-Using-Crops-as-Metal-r-nPhytoremediants,87723,0,2.html
  • Cui S, Zhou Q, Chao L. 2007. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol. 51(6):1043–1048. doi:10.1007/s00254-006-0373-3
  • Dheri GS, Brar MS, Malhi SS. 2007. Comparative phytoremediation of chromium-contaminated soils by fenugreek, spinach, and raya. Commun Soil Sci Plant Anal. 38(11–12):1655–1672. doi:10.1080/00103620701380488
  • D’Souza R, Varun M, Pratas J, Paul MS. 2013. Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: implications for phytoremediation. Soil. Sediment Contam Int J. 22(1):1–20. doi:10.1080/15320383.2012.697936
  • Gao Y, Xia J. 2011. Chromium contamination accident in China: viewing environment policy of China. Environ Sci Technol. 45(20):8605–8606. doi:10.1021/es203101f
  • Gardea-Torresdey JL, De la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I. 2005. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol. 48(2):225–232. doi:10.1007/s00244-003-0162-x
  • Gawronski SW, Gawronska H. 2007. Plant taxonomy for phytoremediation: advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. Dordrecht: Springer. p. 79–88. doi:10.1007/978-1-4020-5520-1_5
  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T. 2011. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata-prospective for phytoextraction from contaminated water and soil. Curr Sci. 100:888–894. https://www.jstor.org/stable/24076481
  • Kashyap R, Verma KS, Thakur M, Verma Y, Handa S. 2016. Phytoextraction and bioconcentration of heavy metals by Spinacia oleracea grown in paper mill effluent irrigated soil. Nat Environ Pollut Technol. 15(3):817–824. http://www.neptjournal.com/upload-images/NL-57-7-(5)B-3272
  • Kumar A, Maiti SK. 2014. Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India. Bull Environ Contam Toxicol. 93(4):434–441. doi:10.1007/s00128-014-1339-x
  • Kumar A, Maiti SK, Tripti PMNV, Singh RS. 2017. Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. J Soils Sediments. 17(5):1358–1368. doi:10.1007/s11368-015-1323-z
  • Li MS, Luo YP, Su ZY. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environ Pollut. 147(1):168–175. doi:10.1016/j.envpol.2006.08.006
  • Liu D, Zou J, Wang M, Jiang W. 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol. 99(7):2628–2636. doi:10.1016/j.biortech.2007.04.045
  • Lopez-Luna J, Gonzalez CM, Esparza GF, Rodriguez VR. 2009. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater. 163(2–3):829–834. doi:10.1016/j.jhazmat.2008.07.034
  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K. 2004. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Science Asia. 30:93–103. doi:10.2306/scienceasia1513-1874.2004.30.093
  • McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14(3):277–282. doi:10.1016/S0958-1669(03)00060-0
  • Mehmood F, Rashid A, Mahmood T, Dawson L. 2013. Effect of DTPA on Cd solubility in soil-accumulation and subsequent toxicity to lettuce. Chemosphere. 90(6):1805–1810. doi:10.1016/j.chemosphere.2012.08.048
  • Memon AR, Schroder P. 2009. Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int. 16(2):162–175. doi:10.1007/s11356-008-0079-z
  • Miao Q, Yan J. 2013. Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycles Waste Manag. 15(1):98–105. doi:10.1007/s10163-012-0095-4
  • Monni S, Salemaa M, Millar N. 2000. The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut. 109(2):221–229. doi:10.1016/S0269-7491(99)00264-X
  • Nayak K, Panda SS, Basu A, Dhal NK. 2018. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremed. 20(7):682–691. doi:10.1080/15226514.2017.1413332
  • Odjegba VJ, Fasidi IO. 2007. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist. 27(3):349–355. doi:10.1007/s10669-007-9047-2
  • Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y. 2013. Development of profitable phytoremediation of contaminated soils with biofuel crops. JEP. 04(04):58–64. doi:10.4236/jep.2013.44A008
  • Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M, Caupert C, Cébron A, Cortet J, Cotelle S, et al. 2011. In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremed. 13(supp1):245–263. doi:10.1080/15226514.2011.568546
  • Pourakbar L, Khayami M, Khara J, Farbodnia T. 2007. Physiological effects of copper on some biochemical parameters in Zea mays L. seedlings. Pak J Biol Sci. 10(22):4092–4096. doi:10.3923/pjbs.2007.4092.4096
  • Prado FE, Hilal M, Chocobar-Ponce S, Pagano E, Rosa M, Prado C. 2016. Chromium and the plant: a dangerous affair? Plant Metal Interaction. New York, NY: Elsevier. p. 149–177.
  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S. 2011. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res. 5(4):961–970. doi:10.22059/IJER.2011.453
  • Rani P, Kumar A, Arya RC. 2017. Stabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander. J Soils Sediments. 17(5):1449–1458. doi:10.1007/s11368-016-1466-6
  • Ranieri E, Fratino U, Petruzzelli D, Borges AC. 2013. A comparison between Phragmites australis and Helianthus annuus in chromium phytoextraction. Water Air Soil Poll. 224(3):1465. doi:10.1007/s11270-013-1465-9
  • Raskin I, Ensley BD. 2000. Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley. https://www.wiley.com/en-us/Phytoremediation+of+Toxic+Metals%3A+Using+Plants+to+Clean+Up+the+Environment-p-9780471192541
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49:643–668. doi:10.1146/annurev.arplant.49.1.643
  • Seregin TV, Ivanov VB. 2001. Physiological aspects of toxin action of cadmium and lead on high plants. Plant Physiol. 48:606–630. doi:10.1023/A:1016719901147
  • Shaikh IR, Shaikh PR, Shaikh RA, Shaikh AA. 2013. Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Res J Chem Sci. 3(6):14–23. http://www.isca.in/rjcs/Archives/v3/i6/3.ISCA-RJCS-2013-061.pdf
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. 2005. Chromium toxicity in plants. Environ Int. 31(5):739–753. doi:10.1016/j.envint.2005.02.003
  • Singh D, Nath K, Sharma YK. 2007. Response of wheat seed germination and seedling growth under copper stress. J Environ Biol. 28(2 Suppl):409–414. http://www.jeb.co.in/journal_issues/200704_apr07_supp/paper_10.pdf
  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. 2013. Chromium toxicity and tolerance in plants. Environ Chem Lett. 11(3):229–254. doi:10.1007/s10311-013-0407-5
  • Singh S. 2012. Phytoremediation: a sustainable alternative for environmental challenges. Int J Gr Herb Chem. 46(1):133–139. http://www.citefactor.org/article/index/23579/phytoremediation-a-sustainable-alternative-for-environmental-challenges#.W7ColXszbcc
  • Sinha S, Saxena R, Singh S. 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere. 58(5):595–604. doi:10.1016/j.chemosphere.2004.08.071
  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK, Prasad SM. 2015. Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatal Agric Biotechnol. 4(3):286–295. doi:https://doi.org/10.1016/j.bcab.2015.03.004
  • Sneddon C. 2012. Chromium and its negative effects on the environment: case study. Missoula, Montana-U.S.: Department of Earth Sciences, Montana State University.
  • Sun Y, Zhou Q, Wang L, Liu W. 2009a. The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanium nigrum L.). Bull Environ Contam Toxicol. 82(3):348–353. doi:10.1007/s00128-008-9592-5
  • Sun Y, Zhou Q, An J, Liu W, Liu R. 2009b. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial waste water with the hyperaccumulator plant (Sedum alfredii Hence). Geoderma. 150(1–2):106–112. doi:10.1016/j.geoderma.2009.01.016
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L. 2010. Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 333(8):597–607. doi:10.1016/j.crvi.2010.03.002
  • Talebi S, Nabavi KSM, Sohani DAL. 2014. The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). Intl J Farm Alli Sci. 3:1080–1087. http://ijfas.com/wp-content/uploads/2014/11/1080-1087.pdf
  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD. 2009. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol. 30(3):389–394. http://www.jeb.co.in/index.php?page=abstract&issue=200905_may09&number=13
  • Tong YP, Kneer R, Zhu YG. 2004. Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci. 9(1):7–9. doi:10.1016/j.tplants.2003.11.009
  • UdDin I, Bano A, Masood S. 2015. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf. 113:271–278. doi:10.1016/j.ecoenv.2014.12.014
  • Vajpayee P, Tripathi R, Rai U, Ali M, Singh S. 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere. 41(7):1075–1082. doi:10.1016/S0045-6535(99)00426-9
  • Vernay P, Gauthier-Moussard C, Hitmi A. 2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere. 68(8):1563–1575. doi:10.1016/j.chemosphere.2007.02.052
  • Vogel C, Radtke M, Reinholz U, Schäfers F, Adam C. 2015. Chemical state of chromium, sulfur, and iron in sewage sludge ash-based phosphorus fertilizers. ACS Sustainable Chem Eng. 3(10):2376–2380. doi:10.1021/acssuschemeng.5b00678
  • Vymazal J. 2016. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ. 544:495–498. doi:10.1016/j.scitotenv.2015.12.011
  • Wilkins DA. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80(3):623–633. doi:10.1111/j.1469-8137.1978.tb01595.x
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016
  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C. 2010. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater. 183(1–3):609–615. doi:10.1016/j.jhazmat.2010.07.068
  • Zeng F, Zhao F, Qiu B, Ouyang Y, Wu F, Zhang G. 2011a. Alleviation of chromium toxicity by silicon addition in rice plants. Agric Sci China. 10(8):1188–1196. doi:10.1016/S1671-2927(11)60109-0
  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G. 2011b. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 159(1):84–91. doi:10.1016/j.envpol.2010.09.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.