277
Views
14
CrossRef citations to date
0
Altmetric
Articles

Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil

&

References

  • Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 163:173–181. DOI: 10.1016/j.micres.2006.04.001.
  • Anandham R, Janahiraman V, Gandhi PI, Kwon SW. 2014. Early plant growth promotion of maize by various sulphur oxidizing bacteria that uses different thiosulfate oxidation pathway. Afr J Microbiol Res. 8:19–27.
  • Aria MM, Lakzian A, Haghnia GH, Berenji AR, Besharati H, Fotovat A. 2010. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorous of hard rock phosphate. Bioresour Technol. 101:551–554. DOI: 10.1016/j.biortech.2009.07.093.
  • Asari S, Tarkowska D, Rolcık J, Nova K. O, Palmero DV, Bejai S, Meijer J. 2017. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 245(1):15–30. http://dx.doi.org/10.1155/2011/316856.
  • Awad NM, Abd El-Kader AA, Attia M, Alva AK. 2011. Effects of nitrogen fertilization and soil inoculation of sulfur-oxidizing or nitrogen-fixing bacteria on onion plant growth and yield. Int J Agron. 2011:1.
  • Baker BJ, Banfield JF. 2003. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 44:139–152. doi.org/10.1016/S0168-6496(03)00028-X.
  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14:176–182. DOI: 10.1016/j.tim.2006.02.006.
  • Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem. 19(4):451.
  • Banerjee MR, Yesmin L. 2004. BioBoost: a new sulphur-oxidizing bacterial inoculant for canola. In: Proceedings for the 4th international crop science congress. Brisbane, Australia.
  • Bharucha UD, Patel KC, Trivedi UB. 2013. In vitro screening of isolates for its plant growth promoting activities from the rhizosphere of Alfalfa (Medicago Sativa). J Microbiol Biotech Res. 3(5):79–88.
  • Bhatti TM, Yawar W. 2010. Bacterial solubilization of phosphorus from phosphate rock containing sulfur-mud. Hydrometallurgy. 103(1–4):54–59. DOI: 10.1016/j.hydromet.2010.02.019.
  • Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 20(3–4):591. DOI: /10.1016/0038-0717(87)90037-X.
  • Braña V, Cagide C, More MA. 2016. The sustainable use of Delftia in agriculture, bioremediation, and bioproducts synthesis. In: Castro-Sowinski, Susana, editor. Microbial models: from environmental to industrial sustainability. Springer. p. 227–247.
  • Cha JM, Cha WS, Lee JH. 1999. Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing bacteria. Process Biochem. 34(6–7):659–665. DOI: 10.1016/S0032-9592(98)00139-3.
  • Clark VL, Bavoil PM. 1994. Methods in enzymology. London: Academic Press. p. 315–372.
  • Clinical and Laboratory Standards Institute. 2005. Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement (M100-S15), Vol. 25, No. 1. Wayne, PA: CLSI.
  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol. 67:2873–2882. DOI: 10.1128/AEM.67.7.2873-2882.2001.
  • Ghosh W, Dam B. 2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 33:999–1043. DOI: 10.1111/j.1574-6976.2009.00187.x.
  • Gray NF. 1998. Acid mine drainage composition and the implications for its impact on lotic systems. Water Research. 322:122–2134. DOI:10.1016/S0043-1354(97)00449-1
  • Grayston SJ, Germida JJ. 1991. Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Can J Microbiol. 37(7):521–529. DOI: 10.1139/m91-088.
  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W. 2005. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol. 28(1):66–76. DOI: 10.1016/j.syapm.2004.09.003.
  • Illmer P, Barbato A, Schinner F. 1995. Solubilization of hardly soluble AlPO4 with P- solubilizing microorganisms. Soil Biol Biochem. 27:260–270.
  • International Organisation for Standardisation (ISO 8692). 1997. Water quality – fresh water algal growth test with Scenededmus Subspicatus and Raphidocelis. Geneva: International Organization for Standardization.
  • Juárez-Jiménez B, Manzanera M, Rodelas B, Martínez-Toledo MV, Gonzalez-López J, Crognale S, Pesciaroli C, Fenice M. 2010. Metabolic characterization of a strain (BM90) of Delftia tsuruhatensis showing highly diversified capacity to degrade low molecular weight phenols. Biodegradation. 21:475–489. DOI: 10.1007/s10532-009-9317-4.
  • Kelly DP, Shergill JK, Lu WP, Wood AP. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek. 71:95–107.
  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16(2):111–120.
  • Koenig RA, Johnson CR. 1942. Colorimetric determination of phosphorus in biological materials. Ind Eng Chem Anal Ed. 14(2):155–156. DOI: 10.1021/i560102a026.
  • Korehi H, Blöthe M, Sitnikova MA, Dold B, Schippers A. 2013. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama desert, Chile. Environ Sci Technol. 47(5):2189–2196. DOI: 10.1021/es304056n.
  • Leibeling S, Schmidt F, Jehmlich N, Bergen MV, Müller RH, Harms H. 2010. The declining capacity of starving Delftia acidovorans MC1 to degrade phenoxypropionate herbicides correlates with oxidative modification of the initial enzyme. Environ Sci Technol. 44:3793–3799. DOI: 10.1021/es903619j.
  • Morel MA, Iriarte A, Jara E, Musto H, Sowinski SC. 2016. Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengineering. 3(2):156–175.
  • Morel MA, Ubalde MC, Braña V, Castro-Sowinski S. 2011. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity . Arch Microbiol. 193:63–68.
  • Mukherjee P, Roychowdhury R, Roy M. 2017. Phytoremediation potential of rhizobacterial isolates from Kans grass (Saccharum spontaneum) of fly ash ponds. Clean Techn Environ Policy. 19(5):1373–1385.
  • Murphy J, Riley JR. 1962. A modified solution method for determination of phosphate in natural water. Analytica Chimica Acta. 27:31–36.
  • Muyzer G, Stams AJM. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 6:441–454.
  • Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG. 1990. Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev. 75(2–3):293–306.
  • Robertson LA, Kuenen JG. 1999. The colorless sulphur bacteria, the prokaryotes: an evolving electronic resource for the microbiological community. 3rd ed. NY: Springer-Verlag.
  • Roychowdhury R, Mukherjee P, Roy M. 2016. Identification of chromium resistant bacteria from dry fly ash sample of Mejia MTPS Thermal Power Plant, West Bengal, India. Bull Environ Contam Toxicol. 96:210–216.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4:406–425.
  • Sarwar M, Arshad M, Martens DA, Frankenberger WT. 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil. 147(2):207–215.
  • Shakoor MB, Ali S, Hameed A. 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf. 109:38.
  • Sievert SM, Heidorn T, Kuever J. 2000. Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulphuroxidizing bacterium isolated from a shallowwater hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol. 50(3):1229.
  • Sorokin DY, Kuenen JG. 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev. 29:685–702.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.
  • Tang K, Baskaran V, Nemati M. 2009. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J. 44:73–94. DOI: 10.1016/j.bej.2008.12.011.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.
  • Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E. 2015. Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci. 8(4):348–357.
  • Ubalde MC, Braña V, Sueiro F, Morel MA, Martínez-Rosales C, Marquez C, Castro-Sowinski S 2012. The versatility of Delftia sp. isolates as tools for bioremediation and biofertilization technologies. Curr Microbiol. 64:597–603. DOI: 10.1007/s00284-012-0108-5.
  • Ullah I, Jilani G, Khan KS, Akhtar MS, Rasheed M. 2014. Sulfur oxidizing bacteria from sulfur rich ecologies exhibit high capability of phosphorous solubilization. Int J Agric Biol. 16:550–556.
  • Vacca DJ, Bleam WF, Hickey WJ. 2005. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol. 71:3797–3805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.