372
Views
14
CrossRef citations to date
0
Altmetric
Articles

Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene

, , , , & ORCID Icon

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK. 2012. Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol. 30(8):416–420. doi:10.1016/j.tibtech.2012.04.004.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075
  • Bossio DA, Scow KM. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol. 35(3):265–278. doi:10.1007/s002489900082
  • Brown JN, Peake BM. 2003. Determination of colloidally-associated polycyclic aromatic hydrocarbons (PAHs) in freshwater using C18 solid phase extraction disks. Anal Chim Acta. 486(2):159–169. doi:10.1016/S0003-2670(03)00472-0.
  • Cai QY, Mo CH, Wu QT, Zeng QY, Katsoyiannis A. 2007. Quantitative determination of organic priority pollutants in the composts of sewage sludge with rice straw by gas chromatography coupled with mass spectrometry. J Chromatogr A. 1143(1–2):207–214. doi:10.1016/j.scitotenv.2007.08.026.
  • Chen F, Tan M, Ma J, Zhang S, Li G, Qu J. 2016. Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater. 302:250–261. doi:10.1007/s11368-013-0669-3.
  • Chen F, Zheng H, Zhang K, Ouyang Z, Wu Y, Shi Q, Li H. 2013. Nonlinear impacts of Eucalyptus plantation stand age on soil microbial metabolic diversity. J Soils Sediments. 13(5):887–894. doi:10.1007/s11368-013-0669-3.
  • D’Orazio V, Ghanem A, Senesi N. 2013. Phytoremediation of pyrene contaminated soils by different plant species. Clean-soil air water. 41:377–382. doi:10.1002/clen.201100653.
  • Gaskin S, Soole K, Bentham R. 2008. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytoremediat. 10(5):378–389. doi:10.1080/15226510802100465.
  • Gerhardt KE, Huang X, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176(1):20–30. doi:10.1016/j.plantsci.2008.09.014.
  • Guan SY. 1986. Soil enzymes and research methods. Beijing (China): China Agricultural Science Press. p. 274–323 (in Chinese).
  • He LZ, Gielen G, Bolan NS, Zhang XK, Qin H, Huang HG, Wang HL. 2015a. Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev. 35(2):519–534. doi:10.1007/s13593-014-0270-1.
  • He Y, Xia W, Li XF, Lin JJ, Wu JJ, Xu JM. 2015b. Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars. Environ Sci Pollut Res. 22(5):3908–3919. doi:10.1007/s11356-014-3657-2.
  • Hechmi N, Ben Aissa N, Abdennaceur H, Jedidi N. 2013. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int J Phytoremediation. 15(7):703–713. doi:10.1080/15226514.2012.723067.
  • Hong YW, Liao D, Chen JS, Khan S, Su JQ, Li H. 2015. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res. 22(9):7071–7081. doi:10.1007/s11356-014-3912-6.
  • Johnsen AR, Karlson U. 2005. PAH degradation capacity of soil microbial communities: does it depend on PAH exposure? Microb Ecol. 50(4):488–495. doi:10.2307/25153273.
  • Joner EJ, Leyval C. 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza. 10(4):155–159. doi:10.1007/s005720000071.
  • Khan MI, Cheema SA, Shen CF, Hassan I, Chen YX. 2014. Phytotoxicity assessment of phenanthrene and pyrene in soil using two barley genotypes. Toxicol Environ Chem. 96(1):94–105. doi:10.1080/02772248.2014.923425.
  • Khaziev FKH. 1980. Soil enzyme activities. Beijing: Science Press. p. 21–24 (in Russian).
  • Li YW, Cai QY, Mo CH, Zeng QY, Lu HX, Li QS, Xu GS. 2014. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species. Int J Phytoremediat. 16(6):609–620. doi:10.1080/15226514.2013.803021.
  • Lipinska A, Wyszkowska J, Kucharski J. 2015. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res. 22:18519–18530. doi:10.1007/s11356-015-5329-2.
  • Liu R, Xiao N, Wei SH, Zhao LX, An J. 2014. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ. 473:350–358. doi:10.1016/j.scitotenv.2013.12.027.
  • Liu R, Zhao L, Jin C, Xiao N, Jadeja RN, Sun T. 2014. Enzyme responses to phytoremediation of PAH-contaminated soil using Echinacea purpurea (L.). Water Air Soil Pollut. 225:2230. doi:10.1007/s11270-014-2230-4.
  • Ma B, He Y, Chen HH, Xu JM, Rengel Z. 2010. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut. 158(3):855–861. doi:10.1016/j.envpol.2009.09.024.
  • Ma TT, Teng Y, Christie P, Luo YM, Chen YS, Ye M, Huang YJ. 2013. A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils. Front Environ Sci Eng. 7(1):31–42. doi:10.1007/s11783-012-0463-2.
  • Macek T, Mackova M, Kas J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv. 18(1):23–34. doi:10.1016/S0734-9750(99)00034-8.
  • Margesin R, Zimmerbauer A, Schinner F. 2000. Monitoring of bioremediation by soil biological activities. Chemosphere. 40(4):339–346. doi:10.1016/S0045-6535(99)00218-0.
  • Marschner P, Crowley DE, Lieberei R. 2001. Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza. 11(6):297–302. doi:10.1007/s00572-001-0136-7.
  • McCann JH, Greenberg BM, Solomon KR. 2000. The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L. Aquat Toxicol. 50(3):265–274. doi:10.1016/s0166-445x(99)00096-x.
  • Meng FB, Chi J. 2015. Interactions between Potamogeton crispus L. and phenanthrene and pyrene in sediments. J Soils Sediments. 15(5):1256–1264. doi:10.1007/s11368-015-1080-z.
  • Mo CH, Cai QY, Tang SR, Zeng QY, Wu QT. 2009. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch Environ Contam Toxicol. 56(2):181–189. doi:10.1007/s00244-008-9177-7.
  • Oliveira V, Gomes NCM, Almeida A, Silva AMS, Silva H, Cunha A. 2015. Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb Ecol. 69(1):1–12. doi:10.1007/s00248-014-0455-9.
  • Olsson PA. 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol. 29(4):303–310. doi:10.1111/j.1574-6941.1999.tb00621.x.
  • Paz-Ferreiro J, Trasar-Cepeda C, Leiros MD, Seoane S, Gil-Sotres F. 2011. Intra-annual variation in biochemical properties and the biochemical equilibrium of different grassland soils under contrasting management and climate. Biol Fertil Soils. 47(6):633–645. doi:10.1007/s00374-011-0570-4.
  • Staples CA, Peterson DR, Parkerton TF, Adams WJ. 1997. The environmental fate of phthalate esters: a literature review. Chemosphere. 35(4):667–749. doi:10.1016/S0045-6535(97)00195-1.
  • Sun R, Belcher RW, Liang JQ, Wang L, Thater B, Crowley DE, Wei GH. 2015. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation. J Environ Sci. 33:45–59. doi:10.1016/j.jes.2014.11.013.
  • Torneman N, Yang XH, Baath E, Bengtsson G. 2008. Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Environ Toxicol Chem. 27:1039–1046. doi:10.1897/07-440.1.
  • Yuan Z, Liu G, Da C, Wang J, Liu H. 2015. Occurrence, sources, and potential toxicity of polycyclic aromatic hydrocarbons in surface soils from the yellow river delta natural reserve, China. Arch Environ Contam Toxicol. 68(2):330–341. doi:10.1007/s00244-014-0085-8.
  • Zeng J, Lin X, Zhang J, Li X. 2010. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil. J Hazard Mater. 183(1–3):718–723. doi:10.1016/j.jhazmat.2010.07.085.
  • Zhang ZH, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R. 2012. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma. 175:1–8. doi:10.1016/j.geoderma.2012.01.020.
  • Zhao HM, Hu RW, Huang HB, Wen HF, Du H, Li YW, Li H, Cai QY, Mo CH, Liu JS, Wong MH. 2017. Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria. Biol Fertil Soils. 53(6):663–675. doi:10.1007/s00374-017-1208-y.
  • Zhao LY, Zhu C, Gao CX, Jiang JH, Yang JY, Yang S. 2011. Phytoremediation of pentachlorophenol-contaminated sediments by aquatic macrophytes. Environ Earth Sci. 64(2):581–588. doi:10.1007/s12665-011-1164-z.
  • Zhou Z-F, Wang M-X, Zuo X-H, Yao Y-H. 2017. Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China. Arch Environ Contam Toxicol. 72(1):65–77. doi:10.1007/s00244-016-0333-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.