245
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Induction of non-protein thiols and phytochelatins by cadmium in Eichhornia crassipes

, , &

References

  • Ahner BA, Price NM, Morel FMM. 1994. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay. Proc Natl Acad Sci USA. 91(18):8433–8436. doi:10.1073/pnas.91.18.8433.
  • APHA. 2012. Standard methods for examination of water and wastewater. 22nd ed. Washington (DC): American Public Health Association.
  • Chanakya HNS, Borgaonkar SG, Meena S, Jagadish KS. 1993. Solid-phase biogas production with garbage or water hyacinth. Bioresour Technol. 46(3):227–231. doi:10.1016/0960-8524(93)90125-U.
  • Dalvi A, Bhalerao SA. 2013. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci. 2(9):362–368.
  • De Vos CHR, Vonk MJ, Vooijs R, Schat H. 1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol. 98(3):853–858. doi:10.1104/pp.98.3.853.
  • Degola F, De Benedictis M, Petraglia A, Massimi A, Fattorini L, Sorbo S, Basile A, di Toppi LS. 2014. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol. 55(11):1884–1891. doi:10.1093/pcp/pcu117.
  • Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1):70–77.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015:1–18. doi:10.1155/2015/756120.
  • Gaitonde MK. 1967. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 104(2):627–633. doi:10.1042/bj1040627.
  • Grill E, Winnacker E-L, Zenk MH. 1991. Phytochelatins. Meth Enzymol. 205:333–341.
  • Gupta DK, Vandenhove H, Inouhe M. 2013. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta D, Corpas F, Palma J, editors. Heavy metal stress in plants. Berlin, Heidelberg: Springer.
  • Gupta M, Sinha S, Chandra P. 1996. Copper-induced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH. Ecotoxicology. 5(1):23–33.
  • Gupta M, Tripathi RD, Rai UN, Chandra P. 1998. Role of glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle and Vallisneria spiralis L. under mercury stress. Chemosphere. 37(4):785–800. doi:10.1016/S0045-6535(98)00073-3.
  • Hartley-Whitaker J, Ainsworth G, Meharg AA. 2001. Copper- and arsenateinduced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ. 24(7):713–722. doi:10.1046/j.0016-8025.2001.00721.x.
  • Hasan SH, Talat M, Rai S. 2007. Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour Technol. 98(4):918–928.
  • Hayashi Y, Nakagawa CW, Uyakul D, Imai K, Isobe M, Goto T. 1988. The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium. Biochem Cell Biol. 66(4):288–295. doi:10.1139/o88-038.
  • Hazama K, Nagata S, Fujimori T, Yanagisawa S, Yoneyama T. 2015. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol Plantarum. 154(2):243–255. doi:10.1111/ppl.12309.
  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-LM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, et al. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie. 88(11):1751–1765. doi:10.1016/j.biochi.2006.04.018.
  • Hissin PJ, Hilf R. 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 74(1):214–226.
  • ISI (Indian Standards Institution). 1974. Indian standard specification for wastewater discharge into surface water bodies, IS: 249015.
  • John R, Ahmad P, Gadgil K, Sharma S. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod. 3(3):65–76.
  • Lee BD, Hwang S. 2015. Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep. 9(3):107–114. doi:10.1007/s11816-015-0348-5.
  • Leopold I, Gu¨ Nther D, Schmidt J, Neumann D. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry. 50(8):1323–1328. doi:10.1016/S0031-9422(98)00347-1.
  • Liao S, Chang W. 2004. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manag. 42:60–68.
  • Lyuben Z, Charlotte ES, Ilse K, Mariela O. 2013. A central role for thiols in plant tolerance to abiotic stress. International J Mol Sci. 14(4):7405–7432.
  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MV. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem. 44(1):25–37. doi:10.1016/j.plaphy.2006.01.007.
  • Mishra S, Maiti A. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 24(9):7921–7937.
  • Nicoletta R, Flavia N-I. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181.
  • Pal R, Rai JPN. 2009. Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol. 160(3):945–963.
  • Pal R, Rai JPN. 2010. The phytoextraction potential of water hyacinth (Eichchornia crassipes): removal of selenium and copper. Chem Ecol. 26(3):163–172. doi:10.1080/02757541003785833.
  • Peng J-S, Gong J-M. 2014. Vacuolar sequestration capacity and long-distance metal transport in plants. Front Plant Sci. 5:1–69.
  • Rai UN, Tripathi RD, Sinha S, Chandra P. 1995. Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata royle and Chara coralline wildenow. J Environ Sci Health A. 30:537–551. doi:10.1080/10934529509376216.
  • Rai UN, Sinha S, Tripathi RD, Chandra P. 1995. Waste water treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng. 5(1):5–12. doi:10.1016/0925-8574(95)00011-7.
  • Rausch T, Wachter A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10(10):503–509. doi:10.1016/j.tplants.2005.08.006.
  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Md Din MF, Taib SM, Sabbagh F, Sairan FM. 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage. 163:125–133.
  • Romero-Puertas MC, Palma JM, G´Omez M, del Rio A, Sandalio LM. 2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ. 25(5):677–686. doi:10.1046/j.1365-3040.2002.00850.x.
  • Sharma SS, Dietz KJ, Mimura T. 2016. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 39(5):1112–1126.
  • Singhal V, Rai JPN. 2003. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol. 86(3):221–225. doi:10.1016/S0960-8524(02)00178-5.
  • Sinha S, Chandra P. 1990. Removal of Cu and Cd from water by Bacopa monnieri. J Water Air Soil Poll. 51:271–276.
  • Swarnalatha K, Radhakrishnan B. 2015. Studies on removal of Zn & Cr from aqueous solutions using water hyacinth. Pollution. 1(2):193–202.
  • Tripathi RD, Rai UN, Gupta M, Chandra P. 1996. Induction of phytochelatins in Hydrilla verticillata (l.f.) royle under cadmium stress. Bull Environ Contam Toxicol. 56(3):505–512.
  • Tukendorf A, Rauser WE. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci. 70(2):155–166. doi:10.1016/0168-9452(90)90129-C.
  • Yadav SK. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot. 76(2):167–179. doi:10.1016/j.sajb.2009.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.