577
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead–zinc mine wasteland

ORCID Icon, , , , ORCID Icon, & show all

References

  • Albornoz C, Larsen K, Landa R, Quiroga M, Najle R, Marcovecchio J. 2016. Lead and zinc determinations in Festuca arundinacea and Cynodon dactylon collected from contaminated soils in Tandil (Buenos Aires Province, Argentina). Environ Earth Sci. 75:742. doi:10.1007/s12665-016-5513-9.
  • Alekseenko A, Bech J, Alekseenko A, Shvydkaya N, Roca N. 2018. Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J Geochem Explor. 184:261–270. doi:10.1016/j.gexplo.2017.06.003.
  • Andrade S. A L D, Silveira A. P D D. 2008. Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol. 20(1):39–50. doi:10.1590/S1677-04202008000100005.
  • Andrade SAL, Silveira APD, Jorge RA, Abreu MF. 2009. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremediat. 10:1–13. doi:10.1080/15226510701827002.
  • Babu A, Reddy M. 2011. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue. Environ Pollut. 159:25–29. doi:10.1016/j.envpol.2010.09.032.
  • Bao S. 2000. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press.
  • Behie SW, Bidochka MJ. 2014. Nutrient transfer in plant–fungal symbioses. Trends Plant Sci. 19(11):734–740. doi:10.1016/j.tplants.2014.06.007.
  • Berch SM, Kendrick B. 1982. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia. 74(5):769–776. doi:10.2307/3792863.
  • Bissonnette L, St-Arnaud M, Labrecque M. 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil. 332(1-2):55–67. doi:10.1007/s11104-009-0273-x.
  • Chen Z, Cao Y, Peng A, Xun Z, Gao Y, Kong H. 2012. Impacts of arbuscular mycorrhizal fungi and water conditions on plant growth in rare earth tailings. J Agro-Environ Sci. 31:2101–2107.
  • Cooke J, Johnson M. 2002. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ Rev. 10(1):41–71. doi:10.1139/a01-014.
  • Daniels BA, Skipper HD. 1982. Methods for the recovery and quantitative estimation of propagules from soil. American Phytopathologic Society, St. Paul, MN, pp. 29–35.
  • Degola F, Fattorini L, Bona E, Sprimuto C, Argese E, Berta G, Sanità Di Toppi L. 2015. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. Plant Physiol Bioch. 92:11–18. doi:10.1016/j.plaphy.2015.04.001.
  • Dietterich L, Gonneau C, Casper B. 2017. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecol Appl. 27(6):1862–1875. doi:10.1002/eap.1573.
  • Elekes C, Dumitriu I, Busuioc G, Iliescu N. 2010. The appreciation of mineral element accumulation level in some herbaceous plants species by ICP–AES method. Environ Sci Pollut Res. 17(6):1230–1236. doi:10.1007/s11356-010-0299-x.
  • Ercoli L, Schüßler A, Arduini I, Pellegrino E. 2017. Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil. 419(1-2):153–167. doi:10.1007/s11104-017-3319-5.
  • García-Giménez R, Jiménez-Ballesta R. 2017. Mine tailings influencing soil contamination by potentially toxic elements. Environ Earth Sci. 76:1–12. doi:10.1007/s12665-016-6376-9.
  • Hu Z, Wang P, Li J. 2012. Ecological restoration of abandoned mine land in China. J Resour Ecol. 3:289–296. doi:10.5814/j.issn.1674-764x.2012.04.001.
  • Janouskova M, Pavlikova D. 2010. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil. 332:511–520. doi:10.1007/s11104-010-0317-2.
  • Kumar S, Ghosh P. 2018. Sustainable bio-energy potential of perennial energy grass from reclaimed coalmine spoil (marginal sites) of India. Renew Energ. 123:475–485. doi:10.1016/j.renene.2018.02.054.
  • Leung H, Ye Z, Wong M. 2007. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere. 66(5):905–915. doi:10.1016/j.chemosphere.2006.06.037.
  • Li Z, Ma Z, Van Der Kuijp T, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 468:843–853. doi:10.1016/j.scitotenv.2013.08.090.
  • Mahy G, Piqueray J, Séleck M, Shutcha M, Meerts P, Faucon M. 2015. Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: a case study in copper vegetation of Katanga, DRC. Ecol Eng. 82:214–221. doi:10.1016/j.ecoleng.2015.04.084.
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115(3):495–501. doi:10.1111/j.1469-8137.1990.tb00476.x.
  • Mensah A. 2015. Role of revegetation in restoring fertility of degraded mined soils in Ghana: a review. Int J Biodivers Conserv. 7:57–80. doi:10.5897/IJBC2014.0775.
  • Nayuki K, Chen B, Ohtomo R, Kuga Y. 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microb Environ. 29(1):60–66. doi:10.1264/jsme2.ME13093.
  • Qiao Y, Crowley D, Wang K, Zhang H, Li H. 2015. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ Pollut. 206:636–643. doi:10.1016/j.envpol.2015.08.029.
  • Rillig M, Aguilar-Trigueros C, Bergmann J, Verbruggen E, Veresoglou S, Lehmann A. 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205(4):1385–1388. doi:10.1111/nph.13045.
  • Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG. 2018. Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ. 643:238–246. doi:10.1016/j.scitotenv.2018.06.199.
  • Sheoran V, Sheoran A, Poonia P. 2010. Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sediment Water. 3:13. http://scholarworks.umass.edu/intljssw/vol3/iss2/13
  • Shi H, Wang Y, Cheng Z, Ye T, Chan Z. 2012. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS One. 7(12):e53422. doi:10.1371/journal.pone.0053422.
  • Shu W, Ye Z, Lan C, Zhang Z, Wong M. 2002. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut. 120(2):445–453. doi:10.1016/S0269-7491(02)00110-0.
  • Shu W, Ye Z, Zhang Z, Lan C, Wong M. 2005. Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor Ecology. 13(1):49–60. doi:10.1111/j.1526-100X.2005.00007.x.
  • Shukla S, Singh K, Singh B, Gautam N. 2011. Biomass productivity and nutrient availability of Cynodon dactylon (L.) Pers. growing on soils of different sodicity stress. Biomass Bioenerg. 35(8):3440–3447. doi:10.1016/j.biombioe.2011.04.027.
  • Singh K, Pandey V, Singh R. 2013. Cynodon dactylon: an efficient perennial grass to revegetate sodic lands. Ecol Eng. 54:32–38. doi:10.1016/j.ecoleng.2013.01.007.
  • Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Oxford: Academic Press, Elsevier Ltd.
  • Spruyt A, Buck MT, Mia A, Straker CJ. 2014. Arbuscular mycorrhiza (AM) status of rehabilitation plants of mine wastes in South Africa and determination of AM fungal diversity by analysis of the small subunit rRNA gene sequences. S Afr J Bot. 94:231–237. doi:10.1016/j.sajb.2014.07.006.
  • Thavamani P, Samkumar R, Satheesh V, Subashchandrabose S, Ramadass K, Naidu R, Venkateswarlu K, Megharaj M. 2017. Microbes from mined sites: harnessing their potential for reclamation of derelict mine sites. Environ Pollut. 230:495–505. doi:10.1016/j.envpol.2017.06.056.
  • Venkateswarlu K, Nirola R, Kuppusamy S, Palanisami T, Ravi N, Mallavarapu M. 2016. Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev Environ Sci Biotechnol. 15(2):327–354. doi:10.1007/s11157-016-9398-6.
  • Vodnik D, Grcman H, Macek I, Van Elteren JT, Kovacevic M. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ. 392(1):130–136. doi:10.1016/j.scitotenv.2007.11.016.
  • Wang F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications. Crit Rev Env Sci Tec. 47:1901–1957. doi:10.1080/10643389.2017.1400853.
  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 10(9):1147–1158. doi:10.1016/j.molp.2017.07.012.
  • Weiersbye I, Straker C, Przybylowicz W. 1999. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nucl Instrum Meth B. 158(1-4):335–343. doi:10.1016/S0168-583X(99)00467-X.
  • Wu F, Bi Y, Leung H, Ye Z, Lin X, Wong M. 2010. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol. 44(3):213–218. doi:10.1016/j.apsoil.2009.12.008.
  • Wu J, Sun B, Wang Y, Xin G, Ye S, Peng S. 2011. Arbuscular mycorrhizal fungal colonization improves regrowth of bermudagrass (Cynodon dactylon L.) after cutting. Pak J Bot. 43:85–93. doi:10.1090/mbk/079/06.
  • Wu S, Chen B, Sun Y, Ren B, Zhang X, Wang Y. 2014. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. Environ Toxicol Chem. 33(9):2105–2113. doi:10.1002/etc.2661.
  • Wu S, Hu Y, Zhang X, Sun Y, Wu Z, Li T, Lv J, Li J, Zhang J, Zheng L, et al.2018. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environ Exp Bot. 147:43–52. doi:10.1016/j.envexpbot.2017.11.010.
  • Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Lv J, Li G, Zhang Z, Zhang J, et al.2016. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. J Hazard Mater. 316:34–42. doi:10.1016/j.jhazmat.2016.05.017.
  • Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Su D, Lv J, Li G, Zhang Z, et al.2015. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS. Environ Sci Technol. 49(24):14036–14047. doi:10.1021/acs.est.5b03659.
  • Xie Y, Luo H, Hu L, Sun X, Lou Y, Fu J. 2014. Classification of genetic variation for cadmium tolerance in bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers. Ecotoxicology. 23(6):1030–1043. doi:10.1007/s10646-014-1247-1.
  • Xue L, Liu J, Shi S, Wei Y, Chang E, Gao M, Chen L, Jiang Z. 2014. Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China). Clean Soil Air Water. 42(1):81–87. doi:10.1002/clen.201200490.
  • Yang S, Liang S, Yi L, Xu B, Cao J, Guo Y, Zhou Y. 2014. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Env Sci Eng. 8:294–404. doi:10.1007/s11783-013-0602-4.
  • Yang T-T, Liu J, Chen W-C, Chen X, Shu H-y, Jia P, Liao B, Shu W-S, Li J-T. 2017. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings. Soil Biol Biochem. 114:52–58. doi:10.1016/j.soilbio.2017.07.004.
  • Yao Q, Yang R, Long L, Zhu H. 2014. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ Exp Bot. 108:63–70. doi:10.1016/j.envexpbot.2013.11.007.
  • Yoon J, Cao X, Zhou Q, Ma L. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res. 25(24):24338–24347. doi:10.1007/s11356-018-2487-z.
  • Zhang X, Chen B, Ohtomo R. 2015. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Sci Plant Nutr. 61(2):359–368. doi:10.1080/00380768.2014.985578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.