278
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all

References

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ. 2012. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosph. 86(5):546–555. doi:10.1016/j.chemosphere.2011.10.038.
  • Amin I, Norazaidah Y, Hainida KIE. 2006. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food. Chem. 94(1):47–52. doi:10.1016/j.foodchem.2004.10.048.
  • Arena C, Figlioli F, Sorrentino MC, Izzo LG, Capozzi F, Giordano S, Spagnuolo V. 2017. Ultrastructural, protein and photosynthetic alterations induced by pb and cd in Cynara cardunculus L. and its potential for phytoremediation. Ecotox Environ Safe. 145:83. doi:10.1016/j.ecoenv.2017.07.015.
  • Arriagada CA, Herrera MA, Ocampo JA. 2005. Contribution of Arbuscular Mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Pollut. 166(1–4):31–47. doi:10.1007/s11270-005-7711-z.
  • Baker ATM. 1981. Accumulators and excluders-strategies in the response of plants to heavy metal. J Plant Nutr. 3(1–4):643–654. doi:10.1080/01904168109362867.
  • Basharat Z, Yasmin A. 2016. Genome editing weds CRISPR: what is in it for phytoremediation? PeerJ Preprint. 4:e2034v1
  • Bello AO, Tawabini BS, Khalil AB, Boland CR, Saleh TA. 2018. Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng. 120:126–133. doi:10.1016/j.ecoleng.2018.05.035.
  • Burzyński M, Kłobus G. 2004. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica. 42(4):505–510. doi:10.1007/S11099-005-0005-2.
  • Chen YP, Chen D, Liu Q. 2017. Exposure to a magnetic field or laser radiation ameliorates effects of Pb and Cd on physiology and growth of young wheat seedlings. J Photoch Photobio B Biol. 169:171–177. doi:10.1016/j.jphotobiol.2017.03.012.
  • D’Souza RJ, Varun M, Masih J, Paul MS. 2010. Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in urban north central India. J. Hazard Mater. 184:457–464. doi:10.1016/j.jhazmat.2010.08.056.
  • De Oliveira VH, Tibbett M. 2018. Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environ Exp Bot. 155:281–292. doi:10.1016/j.envexpbot.2018.07.011.
  • Dresler S, Bednarek W, Wójcik M. 2014. Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare L. Ecotox Environ Safe. 104:332–338. doi:10.1016/j.ecoenv.2014.03.019.
  • Eckmekçi Y, Tanyolaç D, Ayhan B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol. 165:600–611. doi:10.1016/j.jplph.2007.01.017.
  • Ent A, Baker A, Reeves R, Pollard A, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 362:319–334. doi:10.1007/s11104-012-1287-3.
  • Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z. 2018. Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicol Environ Saf. 147:306–312. doi:10.1016/j.ecoenv.2017.08.056.
  • Gajewska E, Skłodowska M. 2007. Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol. 164(3):364. doi:10.1016/j.jplph.2006.05.021.
  • Hattab S, Bougattass I, Hassine R, Dridi-Al-Mohandes B. 2019. Metals and micronutrients in some edible crops and their cultivation soils in eastern-central region of Tunisia: a comparison between organic and conventional farming. Food Chem. 270:293–298. doi:10.1016/j.foodchem.2018.07.029.
  • Hooda V. 2007. Phytoremediation of toxic metals from soil and waste water. J Environ Biol. 28(2 Suppl):367–376.
  • Huang B, Guo ZH, Tu WJ, Peng C, Xiao XY, Zeng P, Liu YA, Wang MW, Xiong J. 2018. Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China. Environ Earth Sci. 77:68.
  • Huang GY, Wang YS. 2010. Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. J. Hazard Mater. 182(1–3):848–854. doi:10.1016/j.jhazmat.2010.06.121.
  • Huang C, Wei G, Jie Y, Wang L, Zhou H, Ran C, Huang Z, Jia H, Anjum SA. 2014. Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. Plant Physiol Biochem. 76:86–93. doi:10.1016/j.plaphy.2013.12.021.
  • January MC, Cutright TJ, Van KH, Wei R. 2008. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosph. 70(3):531–537. doi:10.1016/j.chemosphere.2007.06.066.
  • Janas KM, Zieli A, Ska-Tomaszewska J, Rybaczek D, Maszewski J, Posmyk MM, Amarowicz R, Kosińska A. 2010. The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J. Plant Physiol. 167(4):270–276. doi:10.1016/j.jplph.2009.09.016.
  • Kang W, Bao J, Zheng J, Xu F, Wang L. 2018. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediat. 20(1):1–7. doi:10.1080/15226514.2014.950412.
  • Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O. 2002. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol. 38(3):429–441. doi:10.1046/j.1529-8817.2002.t01-1-01148.x.
  • Lee J, Park KY, Cho J, Kim JY. 2018. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosph. 191:520–526. doi:10.1016/j.chemosphere.2017.10.072.
  • Li Z, Wu L, Luo Y, Christie P. 2018. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosph. 194:432. doi:10.1016/j.chemosphere.2017.12.005.
  • Liu X, Gao Y, Khan S, Duan G, Chen A, Ling L, Zhao L, Liu Z, Wu X. 2008. Accumulation of Pb, Cu, and Zn in terrestrial plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J Environ Sci. 20(12):1469–1474. doi:10.1016/S1001-0742(08)62551-6.
  • Liu H, Zhang C, Wang J, Zhou C, Feng H, Mahajan MD, Han XR. 2017. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosph. 171:240–247. doi:10.1016/j.chemosphere.2016.12.081.
  • Luo Y. 2017. Pb accumulation, growth and chlorophyll fluorescence of to different concentrations of pb stress. J Agro-Environ Sci.
  • Mbakara IE, Etim EE. 2017. Phytoremediation of water bodies. Curr Environ Eng. 4(1):18–24.
  • Mertens J, Luyssaert S, Verheyen K. 2005. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ. Poll. 138(1):1–4. doi:10.1016/j.envpol.2005.01.002.
  • Morel JL, Mench M, Guckert A. 1986. Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fert Soils. 2(1):29–34. doi:10.1007/BF00638958.
  • Mohamed I, Zhang GS, Li ZG, Yi L, Fang C, Ke D. 2015. Ecological restoration of an acidic cd contaminated soil using bamboo biochar application. Ecol Eng. 84:67–76.
  • Muszynska E, Labudda M, Rozanska E, Hanus-Fajerska E, Znojek E. 2018. Heavy metal tolerance in contrasting ecotypes of Alyssum montanum. Ecotox Environ Safe. 161:305–317. doi:10.1016/j.ecoenv.2018.05.075.
  • Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M. 2011. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ Earth Sci. 62(3):639–644. doi:10.1007/s12665-010-0553-z.
  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S. 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul. 27(1):49–57. doi:10.1007/s00344-007-9030-7.
  • Pandey VC. 2013. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng. 57:336–341. doi:10.1016/j.ecoleng.2013.04.054.
  • Pandey VC, Singh N, Singh RP, Singh DP. 2014. Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: study from the field. Ecol Eng. 71:722–727. doi:10.1016/j.ecoleng.2014.08.002.
  • Palutoglu M, Akgul B, Suyarko V, Yakovenko M, Kryuchenko N, Sasmaz A. 2018. Phytoremediation of cadmium by native plants grown on mining soil. Bull Environ Contam Toxicol. 100(2):293–297. doi:10.1007/s00128-017-2220-5.
  • Parseh I, Teiri H, Hajizadeh Y, Ebrahimpour K. 2018. Phytoremediation of benzene vapors from indoor air by, Schefflera arboricola and Spathiphyllum wallisii plants. Atmos Pollut Res. S1309104217305779.
  • Pazalberto AM, Celestino AB, Sigua GC. 2014. Phytoremediation of pb in the sediment of a mangrove ecosystem. J Soils Sediments. 14:251–258. doi:10.1007/s11368-013-0752-9.
  • Romária PD, Araújo Almeida A, Pereira LS. 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to cd toxicity in the soil. Ecotoxicol Environ Safe. 144:148–157.
  • Rostami S, Azhdarpoor A, Rostami M, Samaei MR. 2016. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere. 161:219–223. doi:10.1016/j.chemosphere.2016.07.026.
  • Sandmann G, Böger P. 1980. Copper-induced exchange of plastocyanin and cytochrome c-533 in cultures of Anabaena variabilis, and Plectonema boryanum. Plant Sci Lett. 17(4):417–424. doi:10.1016/0304-4211(80)90128-5.
  • Seregin IV, Ivanov VB. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physl. 48(4):523–544.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36. doi:10.1016/j.jhazmat.2016.11.063.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Sharma S, Nagpal AK, Kaur I. 2018. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 255:15–22. doi:10.1016/j.foodchem.2018.02.037.
  • Shrefler JW, Dusky JA, Shilling DG, Brecke BJ, Sanchez CA. 1994. Effects of phosphorus fertility on competition between lettuce (Lactuca sativa) and spiny amaranth (Amaranthus spinosus). Weed Sci. 42:556–560.
  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK. 2018. Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae. Int J Phytoremediation. 20(5):483–489. doi:10.1080/15226514.2017.1374331.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2017a. Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere. 182:129–136. doi:10.1016/j.chemosphere.2017.05.026.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2017b. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf. 135:209–215. doi:10.1016/j.ecoenv.2016.10.001.
  • Sidhu GPS, Singh HP, Batish DR, Kohli RK. 2016. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol. Biochem. 105:290–296. doi:10.1016/j.plaphy.2016.05.019.
  • Steven MC, Jerald S. 2010. Phytoremediation: transformation and control of contaminants. Environ Sci Poll Res. 43(1):6–7.
  • Taamalli M, Ghabriche R, Amari T, Mnasri M, Zolla L, Lutts S, Abdely C, Ghnaya T. 2014. Comparative study of Cd tolerance and accumulation potential between Cakile maritima L. (halophyte) and Brassica juncea L. Ecol. Eng. 71:623–627. doi:10.1016/j.ecoleng.2014.08.013.
  • Ventrella A, Catucci L, Piletska E, Piletsky S, Agostiano A. 2009. Interactions between heavy metals and photosynthetic materials studied by optical techniques. Bioelectrochemistry. 77(1):19–25. doi:10.1016/j.bioelechem.2009.05.002.
  • Vánová L, Kummerová M, Klemš H, Zezulka S. 2009. Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul. 57:39–47. doi:10.1007/s10725-008-9318-z.
  • Xu J, Cai Q, Wang H, Liu X, Lv J, Yao D, Lu Y, Li W, Liu Y. 2017. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil. Environ Monit Assess. 189(5):224. doi:10.1007/s10661-017-5923-5.
  • Yahyaoui A, Khedher O, Rigane G, Salem.R B, Moussaoui Y. 2018. Chemical analysis of essential oil from Echinops Spinosus L. roots: antimicrobial and antioxidant activities. Rev Roum Chim. 63:199–204.
  • Yuan J, Yang Y, Zhou XH, Ge YC, Zeng QR. 2019. A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland. Sep Purif Technol. 210:1001–1007. doi:10.1016/j.seppur.2018.09.056.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ. 650(Pt 1):594–603. doi:10.1016/j.scitotenv.2018.09.055.
  • Zhang X, Li M, Yang H, Li X, Cui Z. 2018. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manage. 223:132–139.
  • Zhang ZY, Wen X, Huang Y, Inoue C, Liang YT. 2017. Higher accumulation capacity of cadmium than zinc by Arabidopsis halleri ssp germmifera in the field using different sowing strategies. Plant Soil. 418:1–12.
  • Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, Zhao J, Okoli CP. 2018. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotox Environ Safe. 151:266–271. doi:10.1016/j.ecoenv.2018.01.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.