464
Views
24
CrossRef citations to date
0
Altmetric
Articles

Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa

, , , , , & show all

References

  • Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv. 27(4):474–488. doi:10.1016/j.biotechadv.2009.04.002.
  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D. 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ. 563:693–703. doi:10.1016/j.scitotenv.2015.10.061.
  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G. 2016. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res Int. 23(9):9215–9226. doi:10.1007/s11356-015-5972-7.
  • Al-Daher R, Al-Awadhi N, Yateem A, Balba MT, ElNawawy A. 2001. Compost soil piles for treatment of oil-contaminated soil. Soil Sediment Contam. 10(2):197–209. doi:10.1080/20015891109211.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Arbaoui S, Slimane RB, Rezgui S, Bettaieb T. 2014. Metal transporters for uptake, sequestration and translocation. Heavy metal remediation: transport and accumulation in plants. New York: Nova Science Publishers. p. 29–44.
  • Ashrafzadeh S, Leung DM. 2015. In vitro breeding of heavy metal-resistant plants: a review. Hortic Environ Biotechnol. 56(2):131–136. doi:10.1007/s13580-015-0128-8.
  • Balba M, Al-Awadhi N, Al-Daher R. 1998. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods. 32(2):155–164. doi:10.1016/S0167-7012(98)00020-7.
  • Banuelos G, Terry N, Leduc DL, Pilon-Smits EA, Mackey B. 2005. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol. 39(6):1771–1777.
  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA. 2003. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual. 32(2):432–440.
  • Castro-Rodríguez V, García-Gutiérrez A, Canales J, Cañas RA, Kirby EG, Avila C, Cánovas FM. 2016. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnol J. 14(1):299–312. doi:10.1111/pbi.12384.
  • Checcucci A, Bazzicalupo M, Mengoni A. 2017. Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Anjum N, Gill S, Tuteja N, editors. Enhancing cleanup of environmental pollutants. Cham: Springer, p. 275–288.
  • Cherian S, Oliveira MM. 2005. Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol. 39(24):9377–9390. doi:10.1021/es051134l.
  • Chiang HC, Lo JC, Yeh KC. 2006. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol. 40(21):6792–6798.
  • Clarke B, Porter N, Symons R, Blackbeard J, Ades P, Marriott P. 2008. Dioxin-like compounds in Australian sewage sludge-review and national survey. Chemosphere. 72(8):1215–1228. doi:10.1016/j.chemosphere.2008.01.076.
  • Cunningham SD, Berti WR, Huang JW. 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13(9):393–397. doi:10.1016/S0167-7799(00)88987-8.
  • Das N, Bhattacharya S, Maiti MK. 2016. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem. 105:297–309. doi:10.1016/j.plaphy.2016.04.049.
  • Dijak M, Smith D, Wilson T, Brown D. 1986. Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep. 5(6):468–470. doi:10.1007/BF00269644.
  • Doty SL. 2008. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 179(2):318–333. doi:10.1111/j.1469-8137.2008.02446.x.
  • Dudka S, Adriano DC. 1997. Environmental impacts of metal ore mining and processing: a review. J Environ Qual. 26(3):590–602.
  • EPA Method 3050B. 1996. Acid digestion of sediments, Sludges, and Soils, Rev. 2. In: Test methods for evaluating solid waste, physical/chemical methods. US EPA, SW-846, Update III.
  • Fasani E, Manara A, Martini F, Furini A, DalCorso G. 2018. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 41(5):1201–1232. doi:10.1111/pce.12963.
  • Fiore MC, Trabace T, Sunseri F. 1997. High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Rep. 16(5):295–298. doi:10.1007/BF01088284.
  • Fu C, Hernandez T, Zhou C, Wang Z-Y. 2014. Alfalfa (Medicago sativa L.). Methods Mol Biol. 1223:213–221. doi:10.1007/978-1-4939-1695-5_17.
  • Fu G, Grbic V, Ma S, Tian L. 2015. Evaluation of somatic embryos of alfalfa for recombinant protein expression. Plant Cell Rep. 34(2):211–221. doi:10.1007/s00299-014-1700-x.
  • Gall JE, Boyd RS, Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 187:201. doi:10.1007/s10661-015-4436-3.
  • Garbisu C, Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77(3):229–236. doi:10.1016/S0960-8524(00)00108-5.
  • Glass DJ. 1998. The 1998 United States market for phytoremediation. Needham (MA): D. Glass Associates.
  • Glick BR. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv. 21(5):383–393.
  • Gong Y, Zhao X, Cai Z, O’reilly S, Hao X, Zhao D. 2014. A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull. 79(1–2):16–33. doi:10.1016/j.marpolbul.2013.12.024.
  • Hall J. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 53(366):1–11. doi:10.1093/jexbot/53.366.1.
  • Hamdi H, Benzarti S, Aoyama I, Jedidi N. 2012. Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeterior Biodegrad. 67:40–47. doi:10.1016/j.ibiod.2011.10.009.
  • Heiss S, Schäfer HJ, Haag-Kerwer A, Rausch T. 1999. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol. 39(4):847–857. doi:10.1023/A:1006169717355.
  • Hernandez-Fernandez M, Christie B. 1989. Inheritance of somatic embryogenesis in alfalfa (Medicago sativa L.). Genome. 32:318–321. doi:10.1139/g89-447.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • Kawahigashi H. 2009. Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol. 20(2):225–230. doi:10.1016/j.copbio.2009.01.010.
  • Khan AG. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol. 18(4):355–364. doi:10.1016/j.jtemb.2005.02.006.
  • Kielly G, Bowley S. 1992. Genetic control of somatic embryogenesis in alfalfa. Genome. 35(3):474–477. doi:10.1139/g92-070.
  • Kong Z, Glick BR. 2017. The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol. 71:97–132. doi:10.1016/bs.ampbs.2017.04.001.
  • Koopmans G, Römkens P, Song J, Temminghoff E, Japenga J. 2007. Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut. 181(1–4):355–371. doi:10.1007/s11270-006-9307-7.
  • Kopriva S. 2006. Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot. 97(4):479–495. doi:10.1093/aob/mcl006.
  • Kumar S. 2013. Phytoremediation of explosives using transgenic plants. J Pet Environ Biotechnol Suppl. 4:11127.
  • Kumar V, Satyanarayana K, Itty SS, Indu E, Giridhar P, Chandrashekar A, Ravishankar G. 2006. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep. 25(3):214–222. doi:10.1007/s00299-005-0045-x.
  • LeDuc DL, AbdelSamie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N. 2006. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut. 144(1):70–76. doi:10.1016/j.envpol.2006.01.008.
  • Leelavathi S, Sunnichan V, Kumria R, Vijaykanth G, Bhatnagar R, Reddy V. 2004. A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep. 22(7):465–470. doi:10.1007/s00299-003-0710-x.
  • Leustek T, Murillo M, Cervantes M. 1994. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol. 105(3):897–902. doi:10.1104/pp.105.3.897.
  • Li S, Wang J, Gao N, Liu L, Chen Y. 2017. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils. Can J Microbiol. 63(4):278–286. doi:10.1139/cjm-2016-0369.
  • Lin Q, Mendelssohn IA. 1998. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng. 10(3):263–274. doi:10.1016/S0925-8574(98)00015-9.
  • Liu W, Liang Z, Shan C, Marsolais F, Tian L. 2013. Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In Vitro Celldevbiol-Plant. 49:17–23. doi:10.1007/s11627-012-9463-y.
  • Liu Y, Wu H, Kou L, Liu X, Zhang J, Guo Y, Ma E. 2014. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PloS One. 9(11):e112759. doi:10.1371/journal.pone.0112759.
  • Logan HM, Cathala N, Grignon C, Davidian JC. 1996. Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem. 271(21):12227–12233. doi:10.1074/jbc.271.21.12227.
  • Maestri E, Marmiroli N. 2011. Transgenic plants for phytoremediation. Int J Phytoremed Suppl. 1:264–279. doi:10.1080/15226514.2011.568549.
  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI. 2011. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol. 14(5):554–562. doi:10.1016/j.pbi.2011.07.004.
  • Mukherjee A, Agrawal SB, Agrawal M. 2016. Heavy metal accumulation potential and tolerance in tree and grass species. In: Singh A, Prasad SM, Singh RP, editors. Plant responses to xenobiotics. Cham: Springer. p. 177–210.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Nagata T, Morita H, Akizawa T, Pan-Hou H. 2010. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Appl Microbiol Biotechnol. 87(2):781–786. doi:10.1007/s00253-010-2572-9.
  • Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel J-P. 2009. Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremed. 11(4):329–346. doi:10.1080/15226510802565394.
  • Neilson S, Rajakaruna N. 2015. Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable land. In: Abid AA, Sarvajeet SG, Ritu G, Guy RL, Lee N, editors. Phytoremediation. Cham: Springer. p. 159–168.
  • Ninković S, Miljuš-Djukić J, Nešković M. 1995. Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tiss Organ Cult. 42(3):255–260. doi:10.1007/BF00029996.
  • Novak F, Konečná D. 1982. Somatic embryogenesis in callus and cell suspension cultures of alfalfa (Medicago sativa L.). Zeitschrift Pflanzenphysiol. 105(3):279–284. doi:10.1016/S0044-328X(82)80022-6.
  • Parrott WA, Bailey MA. 1993. Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant Cell Tiss Organ Cult. 32(1):69–76. doi:10.1007/BF00040118.
  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A. 2002. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol. 129(4):1807–1819. doi:10.1104/pp.000810.
  • Petruzzelli G, Pedron F, Rosellini I, Barbafieri M. 2015. The bioavailability processes as a key to evaluate phytoremediation efficiency. In: Abid AA, Sarvajeet SG, Ritu G, Guy RL, Lee N, editors. Phytoremediation. Cham: Springer. p. 31–43.
  • Peuke AD, Rennenberg H. 2005. Phytoremediation with transgenic trees. Z Naturforsch, C, J Biosci. 60(3–4):199–207.
  • Phieler R, Merten D, Roth M, Buchel G, Kothe E. 2015. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res Int. 22(24):19408–19416. doi:10.1007/s11356-015-4471-1.
  • Pilon-Smits EA, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N. 1999. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119(1):123–132. doi:10.1104/pp.119.1.123.
  • Pilon-Smits EA, LeDuc DL. 2009. Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol. 20(2):207–212. doi:10.1016/j.copbio.2009.02.001.
  • Rajkumar M, Sandhya S, Prasad M, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv. 30(6):1562–1574. doi:10.1016/j.biotechadv.2012.04.011.
  • Riser-Roberts E. 1998. Remediation of petroleum contaminated soils: biological, physical, and chemical processes. Boca Raton: CRC Press.
  • Roy AS, Baruah R, Borah M, Singh AK, Boruah HPD, Saikia N, Deka M, Dutta N, Bora TC. 2014. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeterior Biodegrad. 94:79–89. doi:10.1016/j.ibiod.2014.03.024.
  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol. 16(10):925–928. doi:10.1038/nbt1098-925.
  • Sambrook J, Fritsch EF (Edward F), Maniatis T, Cold Spring Harbor Laboratory. 1989. Molecular cloning: a laboratory manual. 2nd ed. New York, NY: Cold Spring Harbor Laboratory Press.
  • Salt DE, Smith R, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49:643–668. doi:10.1146/annurev.arplant.49.1.643.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Schwab P, Banks MK, Kyle WA. 2006. Heritability of phytoremediation potential for the alfalfa cultivarriley in petroleum contaminated soil. Water Air Soil Pollut. 177(1–4):239–249. doi:10.1007/s11270-006-9161-7.
  • Seshadri B, Bolan N, Naidu R. 2015. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr. 15:524–548. doi:10.4067/S0718-95162015005000043.
  • Shao C, Russinova E, Iantcheva A, Atanassov A, McCormac A, Chen D, Elliott M, Slater A. 2000. Rapid transformation and regeneration of alfalfa (Medicago falcata L.) via direct somatic embryogenesis. Plant Growth Regul. 31(3):155–166. doi:10.1023/A:1006306909722.
  • Shetty K, McKersie BD. 1993. Proline, thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Sci. 88(2):185–193. doi:10.1016/0168-9452(93)90090-M.
  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. 6:1143. doi:10.3389/fpls.2015.01143.
  • Song J, Sorensen EL, Liang GH. 1990. Direct embryogenesis from single mesophyll protoplasts in alfalfa (Medicago sativa L.). Plant Cell Rep. 9(1):21–25. doi:10.1007/BF00232128.
  • Stephenson C, Black CR. 2014. One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci Horiz. 7(0):hzu009. doi:10.1093/biohorizons/hzu009.
  • Strickland SG, Nichol JW, McCall CM, Stuart DA. 1987. Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci. 48(2):113–121. doi:10.1016/0168-9452(87)90138-5.
  • Suresh B, Ravishankar G. 2004. Phytoremediation-a novel and promising approach for environmental clean-up. Crit Rev Biotechnol. 24(2–3):97–124. doi:10.1080/07388550490493627.
  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler J. D A, Engler G, Van Montagu M, Saito K. 1997. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci. 94(20):11102–11107. doi:10.1073/pnas.94.20.11102.
  • Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din M. 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess. 188:206.
  • Tian L, Brown DC, Watson E. 2002. Continuous long-term somatic embryogenesis in alfalfa. In Vitro Cell Dev Biol Plant. 38:279–284. doi:10.1079/IVP2001286.
  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM. 2013. Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue and Organ Culture 113(2):227–235.
  • Trapp S, Rein A, Clausen LPW, Nielsen MA. 2014. Feasibility of phyto remediation of common soil and groundwater pollutants. Timbre Consortium. FP7-ENV-2010.3.1.5-2
  • Van Aken B. 2008. Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol. 26(5):225–227. doi:10.1016/j.tibtech.2008.02.001.
  • Van Aken B. 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol. 20(2):231–236. doi:10.1016/j.copbio.2009.01.011.
  • Van Aken B, Doty SL. 2010. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng Rev. 26:43–64. doi:10.5661/bger-26-43.
  • Van Huysen T, Terry N, Pilon-Smits EA. 2004. Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phytoremed. 6(2):111–118. doi:10.1080/16226510490454786.
  • Walker K, Sato S. 1981. Morphogenesis in callus tissue ofMedicago sativa: the role of ammonium ion in somatic embryogenesis. Plant Cell Tiss Organ Cult. 1(1):109–121. doi:10.1007/BF02318910.
  • Wang Y, Ren H, Pan H, Liu J, Zhang L. 2015. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. J Hazard Mater. 286:269–275. doi:10.1016/j.jhazmat.2014.12.049.
  • Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA. 2004. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual. 33(1):54–60. doi:10.2134/jeq2004.5400.
  • Wong M. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 50(6):775–780.
  • Yang J, Teng Y, Wang J, Li J. 2011. Vanadium Uptake by Alfalfa Grown in V-Cd-contaminated soil by pot experiment. Biol Trace Elem Res. 142(3):787–795. doi:10.1007/s12011-010-8777-z.
  • Yateem A, Al-Sharrah T, Bin-Haji A. 2007. Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil Sediment Contam. 16(3):269–280. doi:10.1080/15320380701285667.
  • Yateem A, Balba MT, El‐Nawawy AS, Al‐Awadhi N. 2000. Plants‐associated microflora and the remediation of oil‐contaminated soil. Int J Phytoremed. 2(3):183–191. doi:10.1080/15226510009359031.
  • Zhang J, Yu J, Hong H, Liu J, Lu H, Yan C. 2017. Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization. Mar Pollut Bull. 119(1):81–91. doi:10.1016/j.marpolbul.2017.03.023.
  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y. 2013. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater. 260:1100–1107. doi:10.1016/j.jhazmat.2013.06.065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.