247
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Exploration of green integrated approach for effluent treatment through mass culture and biofuel production from unicellular alga, Acutodesmus obliquus RDS01

ORCID Icon, , & ORCID Icon

References

  • Abou-Shanab RA, El-Dalatony MM, El-Sheekh MM, Ji MK, Salama ES, Kabra AN, Jeon BH. 2014. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol Bioproc E. 19(3):510–518. doi:10.1007/s12257-013-0485-z.
  • Adamczyk M, Janusz L, Agnieszka S. 2016. CO2 Biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl Biochem Biotechnol. 179(7):1248–1261. doi:10.1007/s12010-016-2062-3.
  • An JN, Sim SN, Lee JS, Kim BW. 2003. Hydrocarbon production from secondarily treated piggery waste water by the green algae Botryococcus braunii. J Appl Phycol. 15(2/3):185–191. doi:10.1023/A:1023855710410.
  • Andersen RA. 2005. Algal culturing techniques. 1st ed. Academic Press.
  • Andruleviciute V, Skorupskaitė V, Kasperovičienė J. 2011. Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potential biofuel feedstock. Environ Res Eng Mang. 57:21–27.
  • American Public Health Association (APHA). 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington, DC: American Public Health Association/American water works Association/Water environment Federation.
  • Arora A, Saxena S. 2005. Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluents. Biomass Bioenerg. 29(1):60–64. doi:10.1016/j.biombioe.2005.02.002.
  • Ashokkumar, V, Rengasamy, R. 2012. Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol. 104:394–399. doi:10.1016/j.biortech.2011.10.093.
  • Bayramoglu G, Akbulut A, Ozalp VC, Arica MY. 2015. Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem Eng Res Des. 95:12–21. doi:10.1016/j.cherd.2014.12.011.
  • Bhalt N, Dharmesh A, Thakor P. 2012. Production of xylanase by Aspergillus flavus (FPDN1) on pearl millet bran: Optimization of culture conditions and application in bioethanol production. Int J Res Chem Env. 2:204–210.
  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. 2010. Chlorella minutisssima – promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol. 16:1523–1536. doi:10.1007/s12010-009-8771-0.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37(1):911–917. doi:10.1139/o59-099.
  • Box GE, Wilson KB. 1951. On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol. 13:1–38. doi:10.1111/j.2517-6161.1951.tb00067.x.
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv. 25:94–306.
  • D’Oca MGM, Viêgas CV, Lemoes JS, Miyasaki EK, Morón-Villarreyes JA, Primel EG, Abreu PC. 2011. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy. 35:1533–1538. doi:10.1016/j.biombioe.2010.12.047.
  • Dean AP, Sigee DC, Estrada B, Pittman JK. 2010. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technol. 101(12):4499–4507. doi:10.1016/j.biortech.2010.01.065.
  • Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S. 2015. Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytoremed. 17(1-6):222–227. doi:10.1080/15226514.2013.876970.
  • Dizhbite T, Telysheva G, Dobele G, Arshanitsa A, Bikovens O, Andersone A, Kampars V. 2011. Py-GC/MS for characterization of non-hydrolyzed residues from bioethanol production from softwood. J Anal Appl Pyro. 90(2):126–132. doi:10.1016/j.jaap.2010.11.004.
  • Du M, Huang S, Wang J. 2014. The volatiles from fermentation product of Tuber formosanum. OJF. 4:426–429. doi:10.4236/ojf.2014.44047.
  • Dubois, M, Gilles, KA, Hamilton, JK, Rebers, PA, Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3):350–356. doi:10.1021/ac60111a017.
  • Durrant AE, Scrimshaw MD, Stratful I, Lester JN. 1999. Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ Technol. 20(7):749–758. doi:10.1080/09593332008616870.
  • Feng Y, Li C, Zhang D. 2011. Lipid production of Chlorella vulgaris cultured inartificial wastewater medium. Bioresour Technol. 102(1):101–105. doi:10.1016/j.biortech.2010.06.016.
  • Filiz E, Koç I. 2014. In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon. L. J BioSci Biotech. 3:61–67.
  • Franta JR, Wildere PA. 1997. Biological treatment of paper mill wastewater by sequencing batch reactor technology to reduce residual organic. Wat Sci Tech. 35:29–133.
  • Gavrilescu M, Chisti Y. 2005. Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv. 23(7–8):471–499. doi:10.1016/j.biotechadv.2005.03.004.
  • Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F. 2011. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. Bai J Chromatogr A. 1218(45):8289–8293.
  • Gudynaite SL, Gretes M, Morgan Kiss RM, Savitch LV, Simmonds J, Kohalmi SE, Huner NP. 2006. Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii. Mol Genet Genomics. 275(4):387–398. doi:10.1007/s00438-005-0094-4.
  • Guldhe A, Singh B, Rawat I, Bux F. 2014. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem Eng Res Des. 92(8):1503–1511. doi:10.1016/j.cherd.2014.05.012.
  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F. 2016. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod. 115:255–264. doi:10.1016/j.jclepro.2015.12.040.
  • Haigh WG, Yoder TF, Ericson L, Pratum T, Winget RR. 1996. The characterization and cyclic production of a highly unsaturated homoserine lipid in Chlorella minutissima. Biochim Biophys Acta A. 1299(2):183–190. doi:10.1016/0005-2760(95)00205-7.
  • Harwati TU, Willke T, Vorlop KD. 2012. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresource Technol. 121:54–60. doi:10.1016/j.biortech.2012.06.098.
  • Hena, S, Fatihah, N, Tabassum, S, Ismail, N. 2015. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Research. 80:346–356. doi:10.1016/j.watres.2015.05.001.
  • Hu CW, Chuang LT, Yu PC, Chen C. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138(4):2071–2078. doi:10.1016/j.foodchem.2012.11.133.
  • Huang J, Xia J, Jiang W, Li Y, Li J. 2015. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour Technol. 180:47–53. doi:10.1016/j.biortech.2014.12.072.
  • Kim MH, Chung WT, Lee MK, Lee JY, Ohh SJ, Lee JH, Park DH, Kim DJ, Lee HY. 2000. Kinetics of removing nitrogenous and phosphorus compounds from swine waste by growth of microalga Spirulinaplatensis. J Microbiol Biotechnol. 10:455–461.
  • Knothe G. 2008. Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels. 22(2):1358–1364. doi:10.1021/ef700639e.
  • Kong WB, Hua SF, Cao H, Mu YW, Yang H, Song H, Xia CG. 2012. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. J Taiwan Inst Chem Eng. 43(3):360–367. doi:10.1016/j.jtice.2011.11.007.
  • Kothari R, Pathak VV, Kumar V, Singh DP. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol. 116:466–470. doi:10.1016/j.biortech.2012.03.121.
  • KüCk U, Godenhardt I, Schmidt U. 1990. A self-splicing groupII intron in the mitochondrial large subunit rRNA (LSU rRNA) gene of the eukaryotic alga Scenedesmus obliquus. Nucl Acids Res. 18:2691–2697. doi:10.1093/nar/18.9.2691.
  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for two effective lipid extraction from microalgae. Bioresour Technol. 101:75–77.
  • Lee YK, Ding SY, Hoe CH, Low CS. 1996. Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol. 8(2):163–169. doi:10.1007/BF02186320.
  • Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol. 102(8):5138–5144. doi:10.1016/j.biortech.2011.01.091.
  • Loganathan N, Tsai YC, Mueller-Cajar O. 2016. Characterization of the heterooligomeric red-type rubisco activase from red algae. Proc Natl Acad Sci USA. 113(49):14019–14024. doi:10.1073/pnas.1610758113.
  • Loong TC, Idris A. 2014. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization. Bioresour Technol. 174:311–315. doi:10.1016/j.biortech.2014.10.015.
  • Lopez, EN, Medina, AR, Moreno, PA, Callejón, MJ, Cerdán, LE, Valverde, LM, López, BC, Grima, EM. 2015. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids:Influence of operational variables and polar lipid content. Bioresour Technol. 187:346–353. doi:10.1016/j.biortech.2015.03.126.
  • Markou G, Chatzipavlidis I, Georgakakis D. 2012. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol. 112:234–241. doi:10.1016/j.biortech.2012.02.098.
  • Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 14(1):217–232. doi:10.1016/j.rser.2009.07.020.
  • Matsuzaki R, Kawai Toyooka H, Hara Y, Nozaki H. 2015. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia. 54(5):491–502. doi:10.2216/15-33.1.
  • Miranda, JR, Passarinho, PC, Gouveia, L. 2012. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology. 104:342–348. doi:10.1016/j.biortech.2011.10.059.
  • Mouget JL, Beeson RC, Jr, Legendre L, De La Noüe J. 1993. Inadequacy of RuBisCO initial and total activities to account for observed rates of photosynthetic carbon dioxide assimilation by Scenedesmus ecornis. Eur J Phycol. 28(2):99–106. doi:10.1080/09670269300650161.
  • Muralidhar T, Chethan C, Kavya S. 2014. Induced mutational studies on Saccharomyces cerevisiae for bioethanol production from fruit waste. IJRET. 3(3):274–279. doi:10.15623/ijret.2014.0315053.
  • Nayak, M, Karemore, A, Sen, R. 2016. Sustainable valorization of flue gas CO 2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Adv. 6(94):91111–91120. doi:10.1039/C6RA17899E.
  • Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ. 2003. Manipulation of RuBisCO: the amount, activity, function and regulation. J Exp Bot. 54(386):1321–1333. doi:10.1093/jxb/erg141.
  • Patzelt DJ, Hindersin S, Elsayed S, Boukis N, Kerner M, Hanelt D. 2015. Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures. J Appl Phycol. 27(6):2239–2250. doi:10.1007/s10811-014-0496-y.
  • Perazzoli S, Bruchez BM, Michelon W, Steinmetz RL, Mezzari MP, Nunes EO, da Silva ML. 2016. Optimizing biomethane production from anaerobic degradation of Scenedesmus spp. biomass harvested from algae-based swine digestate treatment. Int Biodeter Biodegr. 109:23–28. doi:10.1016/j.ibiod.2015.12.027.
  • Pouliot Y, Buelna G, Racine C, de la Noüe J. 1989. Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biol Waste. 29(2):81–91. doi:10.1016/0269-7483(89)90089-X.
  • Preisig, HR, Andersen, RA. 2005. Historical review of algal culturing techniques. Algal Culturing Techniques. 65:79–82.
  • Ren, H-Y, Liu, B-F, Ma, C, Zhao, L, Ren, N-Q. 2013. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels. 6(1):143 doi:10.1186/1754-6834-6-143.
  • Rinna F, Buono S, Cabanelas ITD, Nascimento IA, Sansone G, Barone C. 2017. Wastewater treatment by microalgae can generate high quality biodiesel feedstock. J Water Process Eng. 18:144–149. doi:10.1016/j.jwpe.2017.06.006.
  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 102(1):100–112. doi:10.1002/bit.22033.
  • Roeges NPG. 1994. A guide to complete interpretation of infrared spectra of organic structures. Chicester: John Wiley & Sons.
  • Roncarati, A, Meluzzi, A, Acciarri, S, Tallarico, N, Meloti, P. 2004. Fatty Acid Composition of Different Microalgae Strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) According to the Culture Phase and the Carbon Dioxide Concentration. J World Aquaculture Soc. 35(3):401–411. doi:10.1111/j.1749-7345.2004.tb00104.x.
  • Sanjivkumar M, Brindhashini A, Deivakumari M, Palavesam A, Immanuel G. 2018. Investigation on Saccharification and Bioethanol Production from Pretreated Agro-Residues Using a Mangrove Associated Actinobacterium Streptomyces variabilis (MAB3). Waste Biomass Valoriz. 9(6):969–84.
  • Sanjivkumar M, Silambarasan T, Palavesam A, Immanuel G. 2017. Bioconversion and bioethanol production from agro-residues through fermentation process using mangrove associated actinobacterium Streptomyces olivaceus (MSU3). Biofuels. 10(2):167–179. doi:10.1080/17597269.2017.1309853
  • Sawyer C, McCarty N, Perry L. 1978. Chemistry for environmental engineering, 3rd ed. New York: McGraw-Hill.
  • Sen S, Dutta S, Guhathakurata S, Chakrabarty J, Nandi S, Dutta A. 2017. Removal of Cr (VI) using a cyanobacterial consortium and assessment of biofuel production. Int Biodeter Biodegr. 119:211–224. doi:10.1016/j.ibiod.2016.10.050.
  • Sevindik E. 2017. Amino acids sequence based in silico analysis of RuBisCO (ribulose-1, 5 bisphosphate carboxylase oxygenase) proteins in some Carthamus L. ssp. Notulae Scientia Biologicae. 9:204–208.
  • Shah Z, Cataluña R, Silva RD. 2016. GC-MS and FTIR analysis of bio-oil obtained from freshwater algae (spirogyra) collected from freshwater. Int J Environ Agr Res. 2:134–141.
  • Sharkey, TD, Savitch, LV, Butz, ND. 1991. Photometric method for routine determination of kcat and carbamylation of rubisco. Photosynth Res. 28(1):41–48. doi:10.1007/BF00027175.
  • Sharma SK, Nelson DR, Abdrabu R, Khraiwesh B, Jijakli K, Arnoux M, O'Connor MJ, Bahmani T, Cai H, Khapli S, et al. 2015. An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnol Biofuels. 8:164. doi:10.1186/s13068-015-0349-1.
  • Shen Y, Yuan W, Pei Z, Mao E. 2008. Culture of microalga Botryococcus in livestock waste water. Trans. 51:1395–1400.
  • Silambarasan TS, Bajwa K, Dhandapani R. 2017. Optimization and mass culture of Acutodesmus obliquus RDS01 under open phototrophic pond cultivation for enhancing biodiesel production. Biofuels. 8(2):243–252. doi:10.1080/17597269.2016.1221301.
  • Sindhu V, Kanchana CN, Vasanthi NS, Ravikumar R. 2012. Design and development of novel bioreactor for the production of ethanol from low cost pretreated rice straw. IOSRJEN. 2:1424–1428. doi:10.9790/3021-026114241428.
  • Sreekanth D, Pooja K, Seeta Y, Himabindu V, Reddy PM. 2014. Bioremediation of dairy wastewater using microalgae for the production of biodiesel. Int J Sci Eng Adv Technol. 2(11):783–791.
  • Stevens DL, Oaks A. 1973. The influence of nitrate in the induction of nitrate reductase in the maize root. Can J Bot. 51:1225–1258.
  • Toledo-Cervantes A, Solórzano GG, Campos JE, Martínez-García M, Morales M. 2018. Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: deeper insight into biotechnological potential of strains of the same species. Biotechnol Reports. 17:16–23. doi:10.1016/j.btre.2017.11.009.
  • Van de Voort F, Al-Alawi A, Sedman J. 2005. A new Fourier transform infrared method for the determination of moisture in edible oils. Appl Spectrosc. 59(10):1295–1299. doi:10.1366/000370205774430846.
  • Varela-Bojórquez N, Vélez-de la Rocha R, Angulo MÁ. 2016. Production of bioethanol from biomass of microalgae Dunaliella tertiolecta. Int J Env Agri Res. 2:110–116.
  • Wang C, Yu X, Lv H, Yang J. 2013. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J Environ Biol. 34(2 Spec No):421–425.
  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T. 2014. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol. 172:169–173. doi:10.1016/j.biortech.2014.09.032.
  • Wang L, Li YC, Chen P, Min M, Chen YF, Zhu J, Ruan RR. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 101(8):2623–2628. doi:10.1016/j.biortech.2009.10.062.
  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 162(4):1174–1186. doi:10.1007/s12010-009-8866-7.
  • Wilson MH, Groppo J, Placido A, Graham S, Morton SA, Santillan-Jimenez E, Shea A, Crocker M, Crofcheck C, Andrews R. 2014. CO2 recycling using microalgae for the production of fuels. Appl Petrochem Res. 4(1):41–53. doi:10.1007/s13203-014-0052-3.
  • Wu KC, Yau YH, Ho KC. 2017. Capability of microalgae for local saline sewage treatment towards biodiesel production. Iop Conf Ser: Earth Environ Sci. 82:012008. doi:10.1088/1755-1315/82/1/012008.
  • Xie W, Wang J. 2014. Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels. 28(4):2624–2631. doi:10.1021/ef500131s.
  • Yadavalli R, Rao CS, Rao RS, Potumarthi R. 2014. Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. Asia-Pac J Chem Eng. 9(3):368–373. doi:10.1002/apj.1805.
  • Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K. 2014. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresource Technol. 174:53–59. doi:10.1016/j.biortech.2014.09.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.