880
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce

, , , , ORCID Icon &

References

  • Ahmed MK, Baki MA, Islam MS, Kundu GK, Sarkar SK, Hossain MM. 2015a. Human health risk assessment of heavy metals in tropical fish and shell fish collected from the river Buriganga, Bangladesh. Environ Sci Pollut Res. 22:15880. doi:10.1007/s11356-015-4813-z.
  • Ahmed MK, Shaheen N, Islam MS, Al-Mamun MH, Islam S, Banu CP. 2015b. Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environ Monit Assess. 187:326–336.
  • Ajayi TO, Ogunbayo AO. 2012. Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J Sustain Dev. 5(7):80–90.
  • Akinbile CO, Ogunrinde TA, Hasfalina CBMH, Aziz HA. 2015. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Inter J Phytorem. 1:54–61.
  • Akinbile CO, Yusoff MS. 2012. Water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment in Malaysia. Int J Phytorem. 14(3):201–211. doi:10.1080/15226514.2011.587482.
  • Anning AK, Korsah PE, Addo-Fordjour P. 2013. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. Int J Phytorem. 15(5):452–464. doi:10.1080/15226514.2012.716098.
  • Ansari MKA, Shao HB, Umar S, Ahmad A, Ansari SH, Iqbal M, Owens G. 2013. Screening Indian mustard genotypes for phytoremediating arsenic-contaminated soils. Clean Soil Air Water. 41(2):195–201. doi:10.1002/clen.201100752.
  • APHA. 1998. Standard methods for the examination of water and waste water. 20th ed. New York (NY): American Public Health Association.
  • Baldantoni D, Ligrone R, Alfani A. 2009. Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J Geochem Explor. 101(2):166–174. doi:10.1016/j.gexplo.2008.06.007.
  • Barceló J, Poschenrieder C. 2003. Phytoremediation: principles and perspectives. Contrib Sci. 2:333–344.
  • Bhattacharya A, Haldar S, Chatterjee PK. 2015. Geographical distribution and physiology of water hyacinth (Eichhornia crassipses) the invasive hydrophyte and a biomass for producing xylitol. Int J ChemTech Res. 7:1849–1861.
  • Bonanno G, Lo Giudice R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic. 10:639–645.
  • Daud MK, Ali S, Abbas Z, Zaheer IE, Riaz MA, Malik A, Hussain A, Rizwan M, Zia-Ur-Rehman M, Zhu SJ. 2018. Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chem. 9. doi:10.1155/2018/3951540.
  • Del Moro G, Barca E, Cassano D, Di Iaconi C, Mascolo G, Brunetti G. 2014. Landfill wall revegetation combined with leachate recirculation: a convenient procedure for management of closed landfills. Environ Sci Pollut Res Int. 21(15):9366–9375. doi:10.1007/s11356-014-2878-8.
  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA. 2009. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf. 72(6):1790–1797. doi:10.1016/j.ecoenv.2009.03.015.
  • Dipu S, Kumar AA, Thanga V. 2011. Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist. 31:263–278. doi:10.1007/s10669-011-9331-z.
  • Eid EM, Youssef MSG, Shaltout KH. 2016. Population characteristics of giant reed (Arundo donax L.) in cultivated and naturalized habitats. Aquat Bot. 129:1–8. doi:10.1016/j.aquabot.2015.11.001.
  • Elfeky SA, Imam H, Alsherbini AA. 2013. Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film. Environ Sci Pollut Res Int. 20(11):8220–8226. doi:10.1007/s11356-013-1797-4.
  • Farnese FS, Oliveira JA, Gusman GS, Leão GA, Silveira NM, Silva PM, Ribeiro C, Cambraia J. 2014. Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Int J Phytoremed. 16(2):123–137. doi:10.1080/15226514.2012.759532.
  • Fawzy MA, Badr NE, El-Khatib A, Abo El-Kassem A. 2012. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 184(3):1753–1771. doi:10.1007/s10661-011-2076-9.
  • Fayiga AQ, Ma LQ. 2006. Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata. Sci Total Environ. 359(1–3):17–25. doi:10.1016/j.scitotenv.2005.06.001.
  • Galal TM, Eid EM, Dakhil MA, Hassan LF. 2018. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytorem. 20(5):440–447.
  • Galal TM, Shehata HS. 2015a. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic. 48:244–251. doi:10.1016/j.ecolind.2014.08.013.
  • Galal TM, Shehata HS. 2015b. Impact of nutrients and heavy metals capture by paddy weeds on the growth and production of rice crop (Oryza sativa L.) irrigated with different water sources. Ecol Indic. 54:108–115. doi:10.1016/j.ecolind.2015.02.024.
  • Galal TM, Shehata HS. 2016. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Int J Phytoremed. 18(12):1221–1230. doi:10.1080/15226514.2016.1193470.
  • Garbisu C, Alkorta I. 2003. Basic concepts on heavy metal soil bioremediation. Eur J Min Proc Environ Protect. 3(1):5866.
  • Govindasamy C, Arulpriya M, Ruban P, Francisca LJ, Ilayaraja A. 2011. Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci. 2:145–153.
  • Gupta P, Roy S, Mahindrakar AB. 2012. Treatment of water using water hyacinth, water lettuce and vetiver grass – a review. Resour Environ. 2(5):202–215. doi:10.5923/j.re.20120205.04.
  • Gworek B, Dmuchowski W, Koda E, Marecka M, Baczewska AH, Brągoszewska P, Sieczka A, Osiński P. 2016. Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water. 8(10):470. doi:10.3390/w8100470.
  • Hadi F, Hussain F, Hussain M, Sanaullah Ahmad A, Ur Rahman S, Ali N. 2014. Phytoextraction of Pb and Cd; the effect of Urea and EDTA on Cannabis sativa growth under metals stress. Int J Agron Agric Res. 5(3):30–39.
  • Harikumar PSP, Megha T. 2017. Treatment of heavy metals from water by electro-phytoremediation technique. J Ecol Eng. 18(5):18–26.
  • Hasan MR, Chakrabarti R. 2009. Use of algae and aquatic macrophytes as feed in small-scale aquaculture, FAO fisheries and aquaculture. Technical Paper 531, Food and Agriculture Organization of the United Nations.
  • Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Hoque MF. 2015. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci. 73(4):1837–1848. doi:10.1007/s12665-014-3538-5.
  • Jitar O, Teodosiu C, Oros A, Plavan G, Nicoara M. 2015. Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the black sea. New Biotechnol. 32(3):369–378. doi:10.1016/j.nbt.2014.11.004.
  • Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants. 3rd ed. Boca Raton (FL): CRC Press. p. 50–54.
  • Kamarudzaman AN, Aziz RA, Jalil MFA. 2011. Removal of heavy metals from landfill leachate using horizontal and vertical subsurface flow constructed wetland planted with Limnocharis flava. Int J Civil Environ Eng IJCEE-IJENS. 11:85–91.
  • Kidd PS, Domínguez-Rodríguez MJ, Díez J, Monterroso C. 2007. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere. 66(8):1458–1467. doi:10.1016/j.chemosphere.2006.09.007.
  • Koda E, Miszkowska A, Sieczka A. 2017. Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Appl Sci. 7:2–22.
  • Koda E, Pachuta K, Osiński P. 2013. Potential of plants application in the initial stage of landfill reclamation process. Pol J Environ Stud. 22:1731–1739.
  • Kumar V, Chopra AK. 2014. Distribution, enrichment and accumulation of heavy metals in soil and Trigonella foenum-graecum L. (fenugreek) after fertigation with paper mill effluent. Open J Metal. 3:8–20.
  • Kumar V, Chopra AK. 2018. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ Technol. 39(1):12–23. doi:10.1080/09593330.2017.1293165.
  • Kumar V, Chopra AK, Singha, J, Thakura RK, Srivastava S, Chauhan RK. 2016. Comparative assessment of phytoremediation feasibility of water caltrop (Trapa natans L.) and water hyacinth (Eichhornia crassipes Solms.) using pulp and paper mill effluent. Arch Agric Environ Sci. 1(1): 13–21.
  • Kumari M, Tripathi BD. 2015. Effect of Phragmites australis and Typha latifolia on biofiltration of heavy metals from secondary treated effluent. Int J Environ Sci Technol. 12(3):1029–1038. doi:10.1007/s13762-013-0475-x.
  • Liao SW, Chang WL. 2004. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage. 42:60–68.
  • Liu AR, Chen SC, Lin XM, Wu SY, Xu T, Cai FM, Raesh J. 2010. Endophytic Pestalotiopsis species spp. associated with plants of Palmae, Rhizophoraceae, Planchonellae and Podocarpaceae in Hainan, China. Afr J Microbiol Res. 4:2661–2669.
  • Liu JT, Sun JJ, Fang SW, Han L, Feng Q, Hu F. 2016. Nutrient removal capacities of four submerged macrophytes in the Poyang Lake basin. Appl Ecol Env Res. 14(2):107–124. doi:10.15666/aeer/1402_107124.
  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP. 2002. Influence of iron status on calcium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128(4):1359–1367. doi:10.1104/pp.010731.
  • Lu RK. 2000. The chemistry analysis method of soil agriculture. Beijing, China: Chinese Agricultural Science Technology Press.
  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X. 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistiastratiotes L.). Environ Sci Pollut Res. 17(1):84–96. doi:10.1007/s11356-008-0094-0.
  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K. 2004. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia. 30:93–103. doi:10.2306/scienceasia1513-1874.2004.30.093.
  • Madsen JD, Wersal RM. 2012. A review of aquatic plant monitoring and assessment methods. J Aquat Plant Manage. 55:1–12.
  • Mahmoud E, El-Kader NA. 2015. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad Dev. 26(8):819–824. doi:10.1002/ldr.2288.
  • Maine MA, Sun ENL, Lagger SC. 2004. Chromium bioaccumulation: comparison of the capacity of two free-floating macrophytes. Water Res. 38(6):1494–1501. doi:10.1016/j.watres.2003.12.025.
  • Mateos-Naranjo E, Castellanos E, Perez-Martin AM. 2014. Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environ Exp Bot. 100:114–121. doi:10.1016/j.envexpbot.2013.12.023.
  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P. 2016. Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. ScienceAsia. 42(2):83–91. doi:10.2306/scienceasia1513-1874.2016.42.083.
  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S. 2009. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res. 16:876–900. doi:10.1007/s11356-009-0252-z.
  • Mertens J, Luyssaert S, Verheyen K. 2005. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ Pollut. 138(1):1–4. doi:10.1016/j.envpol.2005.01.002.
  • Michałowski M, Gołas J. 2001. The contents of selected heavy metals of willow organs as an indicator of their use in sewage sludge. Zesz Probl Post Nauk Rol. 477:411–419 [in Polish].
  • Mishra VK, Tripathi BD. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol. 99(15):7091–7097. doi:10.1016/j.biortech.2008.01.002.
  • Mishra VK, Tripathi BD. 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater. 164(2–3):1059–1063. doi:10.1016/j.jhazmat.2008.09.020.
  • Mohan S, Gandhimathi R. 2009. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater. 169(1–3):351–359. doi:10.1016/j.jhazmat.2009.03.104.
  • Mojiri A, Aziz HA, Aziz SQ. 2013. Trends in physical-chemical methods for landfill leachate treatment. IJSRES. 1:16–25. doi:10.12983/ijsres-2013-p016-025.
  • Mokhtar H, Morad N, Ahmad Fizri FF. 2011. Hyperaccumulation of copper by two species of aquatic plants. Paper presented at: 8th IPCBEE International Conference on Environment Science and Engineering, IACSIT Press, Singapore.
  • Munawarti A, Taryono Semiarti E. Sismindari 2014. Morphological and biochemical responses of glagah (Saccharum spontaneum L.). JTLS. 4(1):61–66. doi:10.11594/jtls.04.01.10.
  • Padmavathiamma PK, Li LY. 2007. Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut. 184(1–4):105–126. doi:10.1007/s11270-007-9401-5.
  • Peng D, Shafi M, Wang Y, Li S, Yan W, Chen J, Ye Z, Liu D. 2015. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ Sci Pollut Res Int. 22(19):14983–14992. doi:10.1007/s11356-015-4692-3.
  • Phusantisampan T, Meeinkuirt W, Saengwilai P, Pichtel J, Chaiyarat R. 2016. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environ Sci Pollut Res Int. 23(19):20027–20038. doi:10.1007/s11356-016-7229-5.
  • Priya ES, Selvan PS. 2014. Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem. 10:3548–3558.
  • Putra RS, Cahyana F, Novarita D. 2015. Removal of lead and copper from contaminated water using EAPR system and uptake by water lettuce (Pistia stratiotes L.). Proc Chem. 14:381–386. doi:10.1016/j.proche.2015.03.052.
  • Putra RS, Hastika FY. 2018. Removal of heavy metals from leachate using electro-assisted phytoremediation (EAPR) and up-take by water hyacinth (Eichornia crassipes). Indonesia J Chem. 18(2):306–312. doi:10.22146/ijc.29713.
  • Putra RS, Novarita D, Cahyana F. 2016. Remediation of lead (Pb) and copper (Cu) using water hyacinth [Eichornia crassipes (Mart.) Solms] with electro-assisted phytoremediation (EAPR). AIP Conf Proc. 1744:020052.
  • Rai PK, Panda LL. 2014. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: an Indo-Burma hot spot region. Air Qual Atmos Health. 7(1):93–101. doi:10.1007/s11869-013-0217-8.
  • Rai PK. 2015. What makes the plant invasion possible? Paradigm of invasion mechanisms, theories and attributes. Environ Skep Crit. 4:36–66.
  • Remmas N, Roukouni C, Ntougias S. 2017. Bacterial community structure and prevalence of Pusillimonas-like bacteria in aged landfill leachate. Environ Sci Pollut Res. 24(7):6757–6769. doi:10.1007/s11356-017-8416-8.
  • Rout GR, Das P. 2009. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Sustainable Agriculture, p. 873–884.
  • Roy M, McDonald LM. 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad Dev. 26(8):785–792. doi:10.1002/ldr.2237.
  • Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P. 2017. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res Int. 24(18):15756–15767. doi:10.1007/s11356-017-9157-4.
  • Saha P, Shinde O, Sarkar S. 2016. Phytoremediation of industrial mines wastewater using Water hyacinth. Int J Phytoremed. 19(1):87–96. doi:10.1080/15226514.2016.1216078.
  • Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Kasamatsu T, Sakurai Y. 2012. Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal processing plant: bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Eco Eng. 39:63–70. doi:10.1016/j.ecoleng.2011.11.014.
  • Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P. 2018. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res. 25(15):14964–14976. doi:10.1007/s11356-018-1714-y.
  • Swain G, Adhikari S, Mohanty P. 2014. Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. Int J Agric Sci Technol. 2(1):1–7. doi:10.14355/ijast.2014.0301.01.
  • Swarnalatha K, Radhakrishnan B. 2015. Studies on removal of Zn and Cr from aqueous solutions using water hyacinth. Pollution. 1(2):193–202.
  • Sytar O, Brestic M, Taran N, Zivcak M. 2016. Chapter 14 – plants used for biomonitoring and phytoremediation of trace elements in soil and water. In: Ahmad P, editor. Plant metal interaction: emerging remediation techniques. Amsterdam: Elsevier. p. 361–376.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat P. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 68(2):323–329. doi:10.1016/j.chemosphere.2006.12.064.
  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B. 2014. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One. 9(1):e87582. doi:10.1371/journal.pone.0087582.
  • Ugya AD, Priatamby A. 2016. Phytoremediation of landfill leachates using Pistia stratiotes: a case study of Kinkinau U/Ma’azu Kaduna, Nigeria. J Agric Biol Environ Stat. 2(4):60–63.
  • Valipour A, Raman VK, Ahn YH. 2015. Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water. 7(12):329–347. doi:10.3390/w7010329.
  • Vaverková MD, Adamcová D, Radziemska M, Voběrková S, Mazur Z, Zloch J. 2018. Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. Waste Biomass Valor. 9(3):503–511. doi:10.1007/s12649-017-0015-x.
  • Verma R, Suthar S. 2015. Lead and cadmium removal from water using duckweed—Lemna gibba L.: impact of pH and initial metal load. Alexandria Eng J. 54(4):1297–1304. doi:10.1016/j.aej.2015.09.014.
  • Villamagna A, Murphy BR. 2016. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw Biol. 55(2):282–298. doi:10.1111/j.1365-2427.2009.02294.x.
  • Voijant TB, Rozaimah SS, Abdullah S, Basri H, Idris M, Anuar N, Mukhlisin M. 2013. Phytoremediation of wastewater containing lead (Pb) in pilot reed bed using Scirpus grossus. Int J Phytorem. 15:663–676. doi:10.1080/15226514.2012.723069.
  • Wang Q, Cui Y, Dong Y. 2002. Phytoremediation of polluted waters potentials and prospects of wetland plants. Acta Biotechnol. 22(1):199–208. doi:10.1002/1521-3846(200205)22:1/2<199::AID-ABIO199>3.0.CO;2-T.
  • Wang S, Shi X, Sun H, Chen Y, Pan H, Yang X, Rafiq T. 2014. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One. 9(9):108568.
  • Wong MH, Chan YSG, Zhang C, Wang-Wai C. 2016. Comparison of pioneer and native woodland species growing on top of an engineered landfill, Hong Kong: restoration programme. Land Degrad Dev. 27(3):500–510. doi:10.1002/ldr.2380.
  • Xia HP. 2004. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere. 54(3):345–353. doi:10.1016/S0045-6535(03)00763-X.
  • Xie S, Ma Y, Strong PJ, Clarke WP. 2015. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: the effect of pH and associated mechanisms. J Hazard Mater. 299:577–583. doi:10.1016/j.jhazmat.2015.07.065.
  • Yao X, Chu J, Wang G. 2009. Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res. 130(3):283–290. doi:10.1007/s12011-009-8328-7.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhang WH, Cai Y, Tu C, Ma QL. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Environ. 300:167–177. doi:10.1016/S0048-9697(02)00165-1.
  • Zhang ZY, Juying L, Mamat Z, Qing FY. 2016. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol Environ Safety. 126:94–101. doi:10.1016/j.ecoenv.2015.12.025.
  • Zhou JZ, Zhang XQ, Xie WM, Yang SQ, Du MX, Dai KW, Han X. 2018. The enhanced effect of activated sludge attached to the roots of Pistia stratiotes on nutrient removal for secondary effluent. Water Sci Technol. 77(6):1683–1688. doi:10.2166/wst.2018.049.
  • Zhou Y, Li S, Shi Y, Lv W, Shen T, Huang Q, Li Y, Wu Z. 2013. Phytoremediation of chromium and lead using water lettuce (Pistia stratiotes L.). Appl Mech Mater. 401–403:2071–2075. doi:10.4028/www.scientific.net/AMM.401-403.2071.
  • Zou T, Li T, Zhang X, Yu H, Huang H. 2012. Lead accumulation and phytostabilization potential of dominant plant species growing in a lead-zinc mine tailing. Environ Earth Sci. 65(3):621–630. doi:10.1007/s12665-011-1109-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.