360
Views
9
CrossRef citations to date
0
Altmetric
Articles

Potential of Bacopa monnieri (L.) Wettst and Sesuvium verrucosum Raf. as an agronomic management alternative to recover the productivity of saline soils

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdelly C, Lachaâl M, Grignon C, Soltani A, Hajji M. 1995. Association épisodique d'halophytes stricts et de glycophytes dans un écosystème hydromorphe salé en zone semi-aride. Agronomie. 15(9–10):557–568. doi:10.1051/agro:19950905.
  • Adam I, Michot D, Guero Y, Soubega B, Moussa I, Dutin G, Walter C. 2012. Detecting soil salinity changes in irrigated Vertisols by electrical resistivity prospection during a desalinisation experiment. Agric Water Manag. 109:1–10. doi:10.1016/j.agwat.2012.01.017.
  • Ado MN, Guero Y, Michot D, Soubeiga B, Kiesse TS, Walter C. 2016. Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina. Agric Water Manag. 177:229–240. doi:10.1016/j.agwat.2016.07.024.
  • Akinshina N, Azizov A, Karasyova T, Klose E. 2016. On the issue of halophytes as energy plants in saline environment. Biomass Bioenerg. 91:306–311. doi:10.1016/j.biombioe.2016.05.034.
  • Akter M, Oue H. 2018. Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agric. 8(10):164. doi:10.3390/agriculture8100164.
  • Ali H, Gul B, Adnan M, Ahmed MZ, Ansari R, Khan MA. 2016. Potential of halophytes as cattle fodder: a case-study in Pakistan. Pak J Agr Sci. 53(3):1–6. doi:10.21162/PAKJAS/16.2580.
  • Allen SE. 1989. Analysis of vegetation and other organic materials. In: Allen SE, editor. Chemical analysis of ecological materials. London: Blackwell Scientific Publications. p. 46–61.
  • Altieri MA, Nicholls CI. 2007. Conversión agroecológica de sistemas convencionales de producción: teoría, estrategias y evaluación. Ecosistemas. 16:3–12.
  • Anaya-Flores R, Cruz-Cárdenas G, Silva JT, Ochoa-Estrada S, Álvarez-Bernal D. 2018. Space-time modeling of the electrical conductivity of soil in a geothermal zone. Commun Soil Sci Plant Anal. 49(9):1107–1118. doi:10.1080/00103624.2018.1448862.
  • Aslam R, Bostansup N, Mariasup M, Safdar W. 2011. A critical review on halophytes: salt tolerant plants. J Med Plant Res. 5:7108–7118. doi:10.5897/JMPRx11.009.
  • Bänziger M, Edmeades GO, Bolaños J. 1997. Relación entre el peso fresco y el peso seco del rastrojo de maíz en diferentes estados fenológicos del cultivo. Agron Mesoam. 8:20–25. doi:10.15517/am.v8i1.24719.
  • Bidak LM, Kamal SA, Halmy MWA, Heneidy SZ. 2015. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob Ecol Conserv. 3:433–447. doi:10.1016/j.gecco.2015.02.001.
  • Blanco-Valdes Y. 2016. El rol de las arvenses como componente en la biodiversidad de los agroecosistemas. Cultivos Tropicales. 37:34–56. doi:10.13140/RG.2.2.10964.19844.
  • Chávez L, Álvarez A. 2011. The selection of tolerant varieties: an alternative for the rehabilitation of salt affected soils. Granma Ciencia. 15:1–10.
  • Corwin DL, Rhoades JD, Šimůnek J. 2007. Leaching requirement for soil salinity control: steady-state versus transient models. Agric Water Manag. 90(3):165–180. doi:10.1016/j.agwat.2007.02.007.
  • Damián-Huato MÁ, Romero-Arenas O, Ramírez-Valverde B, López-Reyes L, Parraguirre-Lezama C, Cruz-León A. 2014. Agricultura familiar y seguridad alimentaria entre productores de maíz de temporal en México. Agroecología. 9:89–99.
  • El-Awady MA, Hassan MM, Al-Sodany YM. 2015. Isolation and characterization of salt tolerant endophytic and rhizospheric plant growth-promoting bacteria (PGPB) associated with the halophyte plant (Sesuvium verrucosum) grown in KSA. Int J Appl Sci Biotechnol. 3(3):552–560. doi:10.3126/ijasbt.v3i3.13440.
  • Elbar OHA. 2015. Development of the successive cambia in Sesuvium verrucosum Raf (Aizoaceae). Ann Agric Sci. 60:203–208. doi:10.1016/j.aoas.2015.07.001.
  • EPA, USA. 1996. Microwave assisted acid digestion of siliceous and organically based matrices. OHW, Method 3052.
  • Flores-Olvera H, Czaja A, Estrada-Rodríguez JL, Méndez UR. 2016. Floristic diversity of halophytic plants of Mexico. In: Khan M, Boër B, Ȫzturk M, Clüsener-Godt M, Gul B, Breckle SW, editors. Sabkha Ecosystems. Tasks for Vegetation Science. Vol. 48. Cham: Springer. p. 299–327.
  • Gairola S, Bhatt A, El-Keblawy A. 2015. A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia. 22:88–97.
  • García E. 1998. Climas (clasificación de Koppen, modificado por García). Escala 1:1000000. México: UNAM.
  • Gee W, Bauder W. 1986. Particle size analysis. In: Klute A, editor. Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Madison (WI): American Society of Agronomy, Soil Science Society of America Inc. p. 383–411.
  • Gharaibeh MA, Eltaif NI, Shunnar OF. 2009. Leaching and reclamation of calcareous saline sodic soil by moderately saline and moderate? SAR water using gypsum and calcium chloride. J Plant Nutr Soil Sci. 172(5):713–719. doi:10.1002/jpln.200700327.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014:1–19. doi:10.1155/2014/701596.
  • Gupta RK, Singh CP, Abrol IP. 1985. Dissolution of gypsum in alkali soils. Soil Sci. 140(5):382–386. doi:10.1097/00010694-198511000-00010.
  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Fujita M. 2014. Potential use of halophytes to remediate saline soils. BioMed Res Int. 2014:1–13. doi:10.1155/2014/589341.
  • INEGI. 2014. Conjunto de datos vectoriales edafológico, escala 1:250000 Serie II. (Continuo Nacional)', escala: 1:250000. edición: 2. México: Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags.
  • Jesus JM, Danko AS, Fiúza A, Borges MT. 2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res. 22(9):6511–6525. doi:10.1007/s11356-015-4205-4.
  • Mohanty SK, Saiers JE, Ryan JN. 2015. Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environ Sci Technol. 49(15):9100–9106. doi:10.1021/acs.est.5b00889.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59(1):651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P. 2018. Halophytes in biosaline agriculture: mechanism, utilization, and value addition. Land Degrad Dev. 29(4):1081–1095. Doi.org/10.1002/ldr.2819 doi:10.1002/ldr.2819.
  • Nouri H, Chavoshi Borujeni S, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D. 2017. Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ. 107:94–107. doi:10.1016/j.psep.2017.01.021.
  • Parida AK, Kumari A, Rangani J, Patel M. 2019. 19 Halophytes: potential resources of coastal ecosystems and their economic, ecological and bioprospecting significance. In: Hasanuzzaman M, Shabala S, Fijita S, editors. Halophytes and climate change: adaptive mechanisms and potential uses. Oxfordshire; Boston: CABI. p. 287.
  • Phondani PC, Bhatt A, Elsarrag E, Alhorr YM, El-Keblawy A. 2016. Criteria and indicator approach of global sustainability assessment system for sustainable landscaping using native plants in Qatar. Ecolo Ind. 69:381–389. doi:10.1016/j.ecolind.2016.05.003.
  • Qadir M, Qadir M, Noble AD, Oster JD, Schubert S, Ghafoor A. 2005. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline–sodic soils: a review. Soil Use Manage. 21(2):173–180. doi:10.1079/SUM2005312.
  • Qadir M, Qureshi RH, Ahmad N, Ilyas M. 1996. Salt tolerant forage cultivation on a saline sodic field for biomass production and soil reclamation. Land Degrad Dev. 7(1):11–18. doi:10.1002/(SICI)1099-145X(199603)7:1 < 11::AID-LDR211 > 3.0.CO;2-C.
  • Qadir M, Oster J. 2002. Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrigation Sci. 21:91–101. doi:10.1007/s00271-001-0055-6.
  • Rabhi M, Atia A, Abdelly C, Smaoui A. 2015. New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. J Theor Biol. 383:7–11. doi:10.1016/j.jtbi.2015.07.027.
  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro H-W, Ranieri A, Abdelly C, Smaoui A. 2010. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol. 101(17):6822–6828. doi:10.1016/j.biortech.2010.03.097.
  • Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni MH, Abdelly C, Smaoui A. 2009. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol. 47(4):463–468. doi:10.1111/j.1365-2028.2008.00989.x.
  • Rajput KS, Patil VS, Shah DG. 2008. Formation of successive cambia and stem anatomy of Sesuvium sesuvioides (Aizoaceae). Bot J Linn Soc. 158(3):548–555. doi:10.1111/j.1095-8339.2008.00867.x.
  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T. 2007. Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem. 39(10):2661–2664. doi:10.1016/j.soilbio.2007.02.005.
  • Reyes-Pérez JJ, Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, Reynaldo-Escobar IM, Rueda-Puente EO, Cuervo-Andrade JL. 2014. Crecimiento y desarrollo de variedades de albahaca (Ocumum basilicum L.) en condiciones de salinidad. Terra Latinoamericana. 32(1):35–45.
  • Ruppel S, Franken P, Witzel K. 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biol. 40(9):940–951. doi:10.1071/FP12355.
  • Sánchez-Blanco J, Guevara-Féfer F. 2013. Plantas arvenses asociadas a cultivos de maíz de temporal en suelos salinos de la ribera del lago de Cuitzeo, Michoacán, México. Acta Bot Mex. 105:107–129.
  • SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2015. Agenda Técnica Agrícola de Michoacán. 2a edición. p. 237. [accessed 2019 Jan 9]. http://www.inifap.gob.mx/Documents/agendas_tecnologicas/16_Michoacan_2015_SIN.pdf
  • SAS Institute Inc. 2004. SAS 9.1. 3 help and documentation. Cary (NC): SAS Institute Inc. p. 5136.
  • Serrato R, Ortíz A, Dimas J, Berúmen S. 2002. Aplicación de lavado y estiércol para recuperar suelos salinos en la Comarca Lagunera, México. Terra. 20(3):329–336.
  • Shabala S, Mackay A. 2011. Ion transport in halophytes. Adv Bot Res. 57:151–199. doi:10.1016/B978-0-12-387692-8.00005-9.
  • Shukla OP, Dubey S, Rai UN. 2007. Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol. 78(3–4):252–257. doi:10.1007/s00128-007-9155-1.
  • SIAP (Servicio de Información Agroalimentaria y Pesquera). 2018. [Accesado el 21/12/2018] http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalCultivo.do
  • Silva-García JT, Ochoa-Estrada S, Cristóbal-Acevedo D, Estrada-Godoy F. 2006. Calidad química del agua subterránea de la ciénega de Chapala como factor de degradación del suelo. Terra Latinoamericana. 24:503–513.
  • Sinha S. 1999. Accumulation of Cu, Cd, Cr, Mn and Pb from artificially contaminated soil by Bacopa monnieri. Environ Monit Assess. 57(3):253–264.
  • Souza ER, dos Santos Freire MBG, de Melo DVM, de Assunção Montenegro AA. 2014. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil. Int J Phytoremediation. 16(1):73–85. doi:10.1080/15226514.2012.759529.
  • Szabolcs I. 1994. Soils and salinization. In: Pessarakli M, editor. Handbook of plant and crop stress. New York: Marcel Dekker. p. 3–11.
  • Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91(5):503–527. doi:10.1093/aob/mcg058.
  • Toresani S, Ferreras L, Bonel B, Bacigaluppo S, Bodrero M, Galarza C, Villar J. 2009. Parámetros edáficos como indicadores de calidad de suelo en diferentes sistemas de manejo. Para Mejorar la Producción. 42:83–89.
  • Torres-Guerrero CA, Etchevers B, Jorge D, Fuentes-Ponce MH, Govaerts B, León-González FD, Herrera JM. 2013. Influencia de las raíces sobre la agregación del suelo. Terra Latinoamericana. 31:71–84.
  • Türkan I, Demiral T. 2009. Recent developments in understanding salinity tolerance. Environ Exper Bot. 67(1):2–9. doi:10.1016/j.envexpbot.2009.05.008.
  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F. 2016. Specialized microbiome of a halophyte and its role in helping nonhost plants to withstand salinity. Sci Rep. 6(1):32467. doi:10.1038/srep32467.
  • Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY. 2018. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. 86(2):323–331. doi:10.1007/s10725-018-0431-3.
  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C. 2012. Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud. 22:299–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.