214
Views
4
CrossRef citations to date
0
Altmetric
Articles

Involvement of glutathione and glutathione metabolizing enzymes in Pistia stratiotes tolerance to arsenite

, , , , &

References

  • Abbas MHH, Meharg AA. 2008. Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil. 304(1–2):277–289. doi:10.1007/s11104-008-9549-9.
  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M. 2018. Arsenic uptake, toxicity, detoxification and speciation in plants: physiological, biochemical and molecular aspects. Int J Environ Res Public Health. 15:59.
  • Anderson JV, Davis DG. 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant. 120(3):421–433. doi:10.1111/j.0031-9317.2004.00249.x.
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, et al. 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot. 75:307–324.
  • Cagnin RC, Quaresma VS, Chaillou G, Franco T, Bastos AC. 2017. Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Sci Total Environ. 607–608:304–316. doi:10.1016/j.scitotenv.2017.06.162.
  • Carlberg I, Mannervik B. 1985. Glutathione reductase. Meth Enzymol. 113:484–495. doi:10.1016/s0076-6879(85)13062-4.
  • Clark RB. 1975. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 23(3):458–460. doi:10.1021/jf60199a002.
  • da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, Oliveira JA. 2017. Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch (Lemnaceae). Theor Exp Plant Physiol. 29(4):203–213. doi:10.1007/s40626-017-0096-8.
  • de Souza Reis INR, Oliveira JA, Ventrella MC, Otoni WC, Marinato CS, Paiva ML. 2019. Involvement of glutathione metabolism in Eichhornia crassipes tolerance to arsenic. Plant Biol. doi:10.1111/plb.12988.
  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD. 2016. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem. 99:86–96. doi:10.1016/j.plaphy.2015.11.005.
  • Eze VC, Harvey AP. 2018. Extractive recovery and valorization of arsenic from contaminated soil through phytoremediation using Pteris cretica. Chemosphere. 208:484–492. doi:10.1016/j.chemosphere.2018.06.027.
  • Farnese FS, Oliveira JA, Lima FS, Leão GA, Gusman GS, Silva LC. 2014. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol. 74(3 suppl 1):S108–S112. doi:10.1590/1519-6984.01113.
  • Fernandes GW, Goulart FF, Ranieri BD, Coelho MS, Dales K, Boesche N, Bustamante M, Carvalho FA, Carvalho DC, Dirzo R, et al. 2016. Deep into the mud: ecological and socio-economic impacts of them dam breach in Mariana. Brazil. Nat Conservação. 14(2):35–45. doi:10.1016/j.ncon.2016.10.003.
  • Ferreira DF. 1999. SISVAR - Sistema de analises estatísticas. Brazil: Lavras-UFLA.
  • Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 106(1):207–212. doi:10.1016/0003-2697(80)90139-6.
  • Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sanlio SM. 2011. Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A, editors. Detoxification of heavy metals (book series: soil biology). Heidelberg (Germany): Springer. p. 169–180.
  • Habig WH, Jakoby WB. 1981. Assays for differentiation of glutathione S-transferases. Meth Enzymol. 77:398–405. doi:10.1016/s0076-6879(81)77053-8.
  • Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 249(22):7130–7139.
  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants. 23(2):249–268. doi:10.1007/s12298-017-0422-2.
  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. 2015. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot. 66(10):2901–2911. doi:10.1093/jxb/erv063.
  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM. 2007. Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell. 19(8):2653–2661. doi:10.1105/tpc.107.052597.
  • Hunt R. 1978. Plant growth analysis. New York (NY): McGraw-Hill Book.
  • Jasrotia S, Kansal A, Mehra A. 2017. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci. 7(2):889–896. doi:10.1007/s13201-015-0300-4.
  • Kofronová M, Hrdinová A, Masková P, Soudek P, Trmlová J, Pinkas D, Lipavská H. 2019. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia Rusticana plants for phytoremediation. Ecotoxicol Environ Saf. 174:295–304. doi:10.1016/j.ecoenv.2019.02.028.
  • Kumar N, Gautam A, Dubey AK, Ranjan R, Pandey A, Kumari B, Singh G, Mandotra S, Chauhan OS, Srikrishna S, et al. 2019. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotoxicol Environ Saf. 173:15–27. doi:10.1016/j.ecoenv.2019.02.017.
  • Kumar S, Trivedi P. 2018. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. 9:751. doi:10.3389/fpls.2018.00751.
  • Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. 2018. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere. 211:397–406. doi:10.1016/j.chemosphere.2018.07.152.
  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB. 2006. The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol. 141(1):288–298. doi:10.1104/pp.105.074815.
  • Li B, Gu B, Yang Z, Zhang T. 2018. The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: a case study on Vallisneria natans (Lour.) Hara. Ecotoxicol Environ Saf. 165:224–231. doi:10.1016/j.ecoenv.2018.09.023.
  • Lindeman W. 1958. Observations on the behavior of phosphate compounds in Chlorella at the transition from dark to light. In: Proceedings of the II International Conference on the Peaceful Uses of Atomic Energy. New York (USA): Columbia University. p. 8–15.
  • Marin AR, Pezeshki SR, Masschelen PH, Choi HS. 1993. Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic and photosynthesis in rice plants. J Plant Nutr. 16:1532–4807.
  • Mishra S, Mattusch J, Wennrich R. 2017. Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep. 7:40522. doi:10.1038/srep40522.
  • Nagalakshmi N, Prasad M. 2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 160(2):291–299. doi:10.1016/S0168-9452(00)00392-7.
  • Olguín EJ, García-López DA, González-Portela RE, Sánchez-Galván G. 2017. Year-round phytofiltration lagoon assessment using Pistia stratiotes within a pilot-plant scale biorefinery. Sci Total Environ. 592:326–333. doi:10.1016/j.scitotenv.2017.03.067.
  • Ozturk F, Duman F, Leblebici Z, Temizgul R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot. 69(2):167–174. doi:10.1016/j.envexpbot.2010.03.006.
  • Patel A, Tiwari S, Prasad SM. 2018. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum. Ecotoxicol Environ Saf. 157:369–379. doi:10.1016/j.ecoenv.2018.03.056.
  • Pimentel C, Sarr B, Diouf O, Abboud ACS, Macauley HR. 2002. Tolerância protoplasmática foliar à seca, em dois genótipos de caupi cultivados em campo. Rev Universo Rural. 22(07):8–14.
  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML. 2017. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ. 581:209–220. doi:10.1016/j.scitotenv.2016.12.111.
  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM. 2008. Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf. 70(2):311–318. doi:10.1016/j.ecoenv.2007.07.009.
  • Rüegsegger A, Brunold CH. 1992. Effect of cadmium and/or removal of kernels or shoots on the levels of cysteine, γ-glutamylcysteine, glutathione, and TCA-soluble thiols in maize seedlings. Phyton. 32:109–112.
  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. 2012. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35(2):334–346. doi:10.1111/j.1365-3040.2011.02338.x.
  • Shri M, Singh PK, Kidwai M, Gautam N, Dubey S, Verma G, Chakrabarty D. 2019. Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice. Metallomics. 11(3):519–532. doi:10.1039/c8mt00320c.
  • Singh VP, Singh S, Kumar J, Prasad SM. 2015. Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma. 252(5):1217–1229. doi:10.1007/s00709-014-0753-6.
  • Singh AP, Sixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, et al. 2016. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci. 6:1–14.
  • Souza TD, Borges AC, Matos AT, Veloso RW, Braga AF. 2018. Kinetics of arsenic absorption by the species Eichhornia crassipes and Lemna valdiviana under optimized conditions. Chemosphere. 209:866–874. doi:10.1016/j.chemosphere.2018.06.132.
  • Tausz M, Ircelj HS, Grill D. 2004. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot. 55(404):1955–1962. doi:10.1093/jxb/erh194.
  • Vezza ME, Luna DF, Agostini E, Talano MA. 2019. Glutathione, a key compound for As accumulation and tolerance in soybean plants treated with AsV and AsIII. Environ Exp Bot. 162:272–282. doi:10.1016/j.envexpbot.2019.03.002.
  • Yabanli M, Yozukmaz A, Sel F. 2014. Heavy metal accumulation in the leaves, stem and roots of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol. 57(3):434–440. doi:10.1590/S1516-8913201401962.
  • Zagorchev L, Seal CE, Kranner I, Odjakova M. 2013. A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci. 14(4):7405–7432. doi:10.3390/ijms14047405.
  • Zutshi S, Bano F, Ningthoujam M, Habib K, Fatma F. 2014. Metabolic adaptations to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339. Int J Innov Res Sci Eng Technol. 3:9386–9394.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.