238
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of phosphorous fertilizers on growth, Cu phytoextraction and tolerance of Leersia hexandra swartz under different Cu stress levels

, , , &

References

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, et al. 2016. Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res. 23(12):11864–11875. doi:10.1007/s11356-016-6382-1.
  • Barkett MO, Akün E. 2018. Heavy metal contents of contaminated soils and ecological risk assessment in abandoned copper mine harbor in Yedidalga. Northern Cyprus. Environ. Earth Sci. 77:378. doi:10.1007/s12665-018-7556-6.
  • Costa MB, Tavares FV, Martinez CB, Colares IG, Martins CDG. 2018. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: potential application to environmental monitoring and phytoremediation. Ecotox Environ Safe. 155:117–124. doi:10.1016/j.ecoenv.2018.01.062.
  • Eissa MA, Roshdy NMK. 2018. Nitrogen fertilization: effect on Cd-phytoextraction by the halophytic plant quail bush [Atriplex lentiformis (Torr.) S.Wats]. S Afr J Bot. 115:126–131. doi:10.1016/j.sajb.2018.01.015.
  • Elleuch A, Chaâbene Z, Grubb DC, Drira N, Mejdoub H, Khemakhem B. 2013. Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress. Ecotox Environ Safe. 98:46–53. doi:10.1016/j.ecoenv.2013.09.028.
  • Forte J, Mutiti S. 2017. Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water Air Soil Poll. 228: 77. doi:10.1007/s11270-017-3249-0.
  • Gomes MP, Carvalho M, Carvalho GS, Marques TCLLSM, Garcia QS, Guilherme LRG, Soares AM. 2013. Phosphorus improves arsenic phytoremediation by Anadenanthera Peregrina by alleviating induced oxidative stress. Int J Phytoremediat. 15(7):633–646. doi:10.1080/15226514.2012.723064.
  • Gomes MP, Le Manac’h SG, Moingt M, Smedbol E, Paquet S, Labrecque M, Lucotte M, Juneau P. 2016. Impact of phosphate on glyphosate uptake and toxicity in willow. J Hazard Mater. 304:269–279. doi:10.1016/j.jhazmat.2015.10.043.
  • Goswami S, Das S. 2016. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotox Environ Safe. 126:211–218. doi:10.1016/j.ecoenv.2015.12.030.
  • Goswami S, Das S. 2017. Screening of cadmium and copper phytoremediation ability of Tagetes erecta, using biochemical parameters and scanning electron microscopy-energy-dispersive X-ray microanalysis. Environ Toxicol Chem. 36(9):2533–2542. doi:10.1002/etc.3768.
  • Hikosaka K, Anten NPR, Borjigidai A, Kamiyama C, Sakai H, Hasegawa T, Oikawa S, Iio A, Watanabe M, Koike T, et al. 2016. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann Bot. 118(2):239–247. doi:10.1093/aob/mcw099.
  • Huang GY, Rizwan MS, Ren C, Guo GG, Fu QL, Zhu J, Hu HQ. 2018. Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.). Environ Sci Pollut Res. 25(1):115–123. doi:10.1007/s11356-016-8132-9.
  • Huang HG, Li TQ, Gupta DK, He ZL, Yang XE, Ni BN, Li M. 2012. Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. J Environ Sci. 24(3):376–386. doi:10.1016/S1001-0742(11)60776-6.
  • Jacobs A, Brabandere LD, Drouet T, Sterckeman T, Noret N. 2018. Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting density. Ecol Eng. 116:178–187. doi:10.1016/j.ecoleng.2018.03.007.
  • Kang W, Bao JG, Zheng J, Xu F, Wang LM. 2018. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediat. 20(1):1–7. doi:10.1080/15226514.2014.950412.
  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M. 2018. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int J Phytoremediat. 20(6):581–592. doi:10.1080/15226514.2017.1405378.
  • Li YB, Song H, Zhou L, Xu ZZ, Zhou GS. 2019. Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field. Agr Forest Meteorol. 272-273:40–54. doi:10.1016/j.agrformet.2019.03.026.
  • Lima LR, Silva HF, Brignoni AS, Silva FG, Camargos LS, Souza LA. 2019. Characterization of biomass sorghum for copper phytoremediation: photosynthetic response and possibility as a bioenergy feedstock from contaminated land. Physiol Mol Biol Plants. 25(2):433–441. doi:10.1007/s12298-018-00638-0.
  • Lin H, Zhang XH, Chen J, Liang L, Tian J, Xian JC. 2016. Accumulation and transportation of copper in different ecotypes of Leersia hexandra Swartz. Toxicol Environ Chem. 98(5-6):611–622. doi:10.1080/02772248.2015.1133375.
  • Long XH, Ni N, Wang L, Wang XH, Wang JX, Zhang ZH, Zed R, Liu ZP, Shao HB. 2013. Phytoremediation of cadmium-contaminated soil by two jerusalem artichoke (Helianthus tuberosus L.) genotypes. Clean Soil Air Water. 41(2):202–209. doi:10.1002/clen.201100668.
  • Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M. 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotox Environ Safe. 147:990–1001. doi:10.1016/j.ecoenv.2017.09.045.
  • Pérez-Palacios P, Romero-Aguilar A, Delgadillo J, Doukkali B, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E. 2017. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environ Sci Pollut Res. 24(17):14910–14923. doi:10.1007/s11356-017-9092-4.
  • Pogrzeba M, Rusinowski S, Krzyżak J. 2018. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Environ Sci Pollut Res. 25(12):12096–12106. doi:10.1007/s11356-018-1490-8.
  • Rudmin M, Banerjee S, Mazurov A, Makarov B, Martemyanov D. 2017. Economic potential of glauconitic rocks in Bakchar deposit (S-E Western Siberia) for alternate potash fertilizer. App Clay Sci. 150:225–233. doi:10.1016/j.clay.2017.09.035.
  • Santana NA, Rabuscke CM, Soares VB, Soriani HH, Nicoloso FT, Jacques RJS. 2018. Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environ Sci Pollut Res. 25(13):12663–12677. doi:10.1007/s11356-018-1533-1.
  • Sayantan D. Shardendu   2013. Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities. Ecotox Environ Safe. 95:161–170.
  • Schmitt FJ, Campbell ZY, Bui MV, Hüls A, Tomo T, Chen M, Maksimov EG, Allakhverdiev SI, Friedrich T. 2019. Photosynthesis supported by a chlorophyll f-dependent, entropydriven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Photosynth Res. 139(1-3):185–201. doi:10.1007/s11120-018-0556-2.
  • Shahzad A, Saddiqui S, Bano A. 2016. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int J Phytoremediat. 18(5):521–526. doi:10.1080/15226514.2015.1115964.
  • Singh SK, Reddy VR, Fleisher DH, Timlin DJ. 2019. Interactive effects of temperature and phosphorus nutrition on soybean: leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency. Photosynt. 57(1):248–257. doi:10.32615/ps.2019.036.
  • Smolinska B, Szczodrowska A, Leszczynska J. 2017. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation. Int J Phytoremediat. 19(8):765–773. doi:10.1080/15226514.2017.1284754.
  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH. 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotox Environ Safe. 126:138–146. doi:10.1016/j.ecoenv.2015.12.031.
  • Wang DQ, Zhang XH, Liu J, Zhu YN, Zhang H, Zhang AL, Jin XD. 2012. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz. Int J Phytoremediat. 14(10):966–977. doi:10.1080/15226514.2011.636406.
  • Wang HO, Wang T, Ahmad I. 2015. Involvement of phosphate supplies in different transcriptional regulation pathway of Oryzasativa L.’s antioxidative system in response to arsenite and cadmium stress. Ecotoxicology. 24(6):1259–1268. doi:10.1007/s10646-015-1496-7.
  • Wen ZG, Shi L, Tang YZ, Shen ZG, Xia Y, Chen YH. 2017. Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper contaminated soil to enhance phytoremediation. Int J Phytoremediat. 19(4):387–394. doi:10.1080/15226514.2016.1244155.
  • You SH, Zhang XH, Liu J, Zhu YN, Gu C. 2014. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environ Technol. 35(2):187–194. doi:10.1080/09593330.2013.822006.
  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R. 2015. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotox Environ Safe. 120:310–317. doi:10.1016/j.ecoenv.2015.06.020.
  • Zhang C, Liu F, Kong WW, He Y. 2015. Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors. 15(7):16576–16588. doi:10.3390/s150716576.
  • Zheng JC, Liu HQ, Feng HM, Li WW, Lam MHW, Lam PKS, Yu HQ. 2016. Competitive sorption of heavy metals by water hyacinth roots. Environ Pollut. 219:837–845. doi:10.1016/j.envpol.2016.08.001.
  • Zhou GD, Guo JM, Yang J, Yang JX. 2018. Effect of fertilizers on Cd accumulation and subcellular distribution of two cosmos species (Cosmos sulphureus and Cosmos bipinnata). Int J Phytoremediat. 20(9):930–938. doi:10.1080/15226514.2018.1448362.
  • Zhou J, Liang JN, Hu YM, Zhang WT, Liu HL, You LY, Zhang WH, Gao M, Zhou J. 2018. Exposure risk of local residents to copper near the largest flash copper smelter in China. Sci Total Environ. 630:453–461. doi:10.1016/j.scitotenv.2018.02.211.
  • Zhou LY, Zhao Y, Wang SF. 2015. Cadmium transfer and detoxification mechanisms in a soil- mulberry-silkworm system: phytoremediation potential. Environ Sci Pollut Res. 22(22):18031–18039. doi:10.1007/s11356-015-5011-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.