373
Views
10
CrossRef citations to date
0
Altmetric
Articles

A multivariate analysis of comparative effects of heavy metals on cellular biomarkers of phytoremediation using Brassica oleracea

, , , , , , , & show all

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health. 15:1–45.
  • Adejumo SA, Tiwari S, Thul S, Ketan Sarangi B. 2019. Evaluation of lead and chromium tolerance and accumulation level in Gomphrena celosoides: a novel metal accumulator from lead acid battery waste contaminated site in Nigeria. Int J Phytoremediation. 21:1341–1355. doi:10.1080/15226514.2019.1633258.
  • Aebi H. 1984. Catalase in vitro. Meth Enzymol. 105:121–126. doi:10.1016/s0076-6879(84)05016-3.
  • Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H. 2011. Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res. 140(3):354–367. doi:10.1007/s12011-010-8699-9.
  • Ameen N, Amjad M, Murtaza B, Abbas G, Shahid M, Imran M, Naeem MA, Niazi NK. 2019. Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environ Sci Pollut Res. 26(11):10496–10514. doi:10.1007/s11356-019-04540-4.
  • Andrade FR, da Silva GN, Guimarães KC, Barreto HBF, de Souza KRD, Guilherme LRG, Faquin V, dos Reis AR. 2018. Selenium protects rice plants from water deficit stress. Ecotoxicol Environ Saf. 164:562–570. doi:10.1016/j.ecoenv.2018.08.022.
  • Antoniadis V, Shaheen S, Levizou E, Shahid M, Niazi N, Vithanage M, Ok Y, Bolan N, Rinklebe J. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment? – a review. Environ Int. 127:819–847. doi:10.1016/j.envint.2019.03.039.
  • Asad SA, Farooq M, Afzal A, West H. 2019. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment – a review. Chemosphere. 217:925–941. doi:10.1016/j.chemosphere.2018.11.021.
  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Li D, Mahmood T. 2017. Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremed. 19(7):605–613. doi:10.1080/15226514.2016.1256372.
  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 174:714–727. doi:10.1016/j.ecoenv.2019.02.068.
  • Biel-Maeso M, González-González C, Lara-Martín PA, Corada-Fernández C. 2019. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Sci Total Environ. 666:662–671. doi:10.1016/j.scitotenv.2019.02.279.
  • Çelik Ö, Akdaş EY. 2019. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol Environ Saf. 170:682–690. doi:10.1016/j.ecoenv.2018.12.006.
  • Chung I-M, Venkidasamy B, Thiruvengadam M. 2019. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol Biochem. 139:92–101. doi:10.1016/j.plaphy.2019.03.010.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101. doi:10.1093/jxb/32.1.93.
  • El-Sheekh MM. 1993. Inhibition of photosystem II in the green alga Scenedesmus obliquus by nickel. Biochem Physiol Pflanzen. 188(6):363–372. doi:10.1016/S0015-3796(11)80139-3.
  • Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. 2019. Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem. 141:353–369.
  • Feng R, Wei C. 2012. Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ. 58(3):105–110.
  • Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J. 2007. Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol. 83(2):149–158. doi:10.1016/j.aquatox.2007.04.001.
  • Gratão P, Alves L, Lima L. 2019. Heavy metal toxicity and plant productivity: role of metal scavengers. In: Srivastava S, Srivastava AK, Suprasanna P, editors. Plant-metal interactions. Cham: Springer; p. 49–60.
  • Gupta V, Jatav PK, Verma R, Kothari SL, Kachhwaha S. 2017. Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats. Environ Sci Pollut Res Int. 24(30):23915–23925. doi:10.1007/s11356-017-0057-4.
  • Handa N, Kohli SK, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. 2018. Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech. 8(1):66. doi:10.1007/s13205-018-1087-4.
  • Hemeda HM, Klein B. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Science. 55(1):184–185. doi:10.1111/j.1365-2621.1990.tb06048.x.
  • Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207(4):604–611. doi:10.1007/s004250050524.
  • Houri T, Khairallah Y, Al Zahab A, Osta B, Romanos D, Haddad G. 2019. Heavy metals accumulation effects on the photosynthetic performance of geophytes in Mediterranean reserve. J King Saud Univ Sci. doi:10.1016/j.jksus.2019.04.005.
  • Hussein H-A, Darwesh OM, Mekki B. 2019. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal Agric Biotechnol. 18:101080. doi:10.1016/j.bcab.2019.101080.
  • Kaur S, Nayyar H. 2015. Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Sci Horticult. 197:304–317. doi:10.1016/j.scienta.2015.09.048.
  • Khalid S, Shahid M, Bibi B M, Natasha I, Naeem M, Niazi N. 2019. A critical review of different factors governing the fate of pesticides in soil under biochar application. Sci Total Environ. doi:10.1016/j.scitotenv.2019.134645.
  • Kotapati KV, Palaka BK, Ampasala DR. 2017. Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J. 5(3):240–250. doi:10.1016/j.cj.2016.09.002.
  • Kováčik J, Babula P, Hedbavny J, Klejdus B. 2014. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium. J Hazard Mater. 273:110–117. doi:10.1016/j.jhazmat.2014.03.040.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.
  • Ma J, Lv C, Xu M, Chen G, Lv C, Gao Z. 2016. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Pollut Res Int. 23(2):1768–1778. doi:10.1007/s11356-015-5439-x.
  • Manaf HH. 2016. Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Ann Agric Sci. 61(1):41–48. doi:10.1016/j.aoas.2016.04.003.
  • Marques A, Piló D, Carvalho S, Araújo O, Guilherme S, Santos MA, Vale C, Pereira F, Pacheco M, Pereira P. 2018. Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum–insights towards its suitability as bioindicator of estuarine metal contamination. Ecol Indic. 95:1087–1099. doi:10.1016/j.ecolind.2017.10.072.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Natasha SM, Dumat C, Khalid S, Rabbani F, Farooq ABU, Amjad M, Abbas G, Niazi NK. 2018. Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environ Sci Pollut Res Int. 26:20121–20131.
  • Natasha SM, Khalid S, Bibi I, Bundschuh J, Niazi N, Dumat C. 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ. doi:10.1016/j.scitotenv.2019.134749.
  • Natasha SM, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI. 2018. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut. 234:915–934.
  • Pandey A, Gautam A, Pandey P, Dubey R. 2019. Alleviation of chromium toxicity in rice seedling using Phyllanthus emblica aqueous extract in relation to metal uptake and modulation of antioxidative defense. South Afr J Bot. 121:306–316. doi:10.1016/j.sajb.2018.11.014.
  • Pandey J, Verma RK, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremediation. 21(5):405–418. doi:10.1080/15226514.2018.1540546.
  • Pandey V, Dikshit V, Shyam R. 2013. Hexavalent chromium induced inhibition of photosynthetic electron transport in isolated spinach chloroplasts. In: Vivek P, Vivek D, Radhey S, editors. Photosynthesis. London: IntechOpen.
  • Pandey V, Dixit V, Shyam R. 2009. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma. 236(1–4):85–95. doi:10.1007/s00709-009-0061-8.
  • Pinto M, Soares C, Pinto AS, Fidalgo F. 2019. Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro – oxidative damage and antioxidant response. Chemosphere. 218:507–516. doi:10.1016/j.chemosphere.2018.11.127.
  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C. 2017. Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation. 19(7):662–669. doi:10.1080/15226514.2016.1278426.
  • Ríos JJ, Blasco B, Cervilla LM, Rosales MA, Sanchez‐Rodriguez E, Romero L, Ruiz JM. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol. 154(1):107–116. doi:10.1111/j.1744-7348.2008.00276.x.
  • Scoccianti V, Iacobucci M, Paoletti MF, Fraternale A, Speranza A. 2008. Species-dependent chromium accumulation, lipid peroxidation, and glutathione levels in germinating kiwifruit pollen under Cr(III) and Cr(VI) stress. Chemosphere. 73(7):1042–1048. doi:10.1016/j.chemosphere.2008.07.083.
  • Sha Q, Lu M, Huang Z, Yuan Z, Jia G, Xiao X, Wu Y, Zhang Z, Li C, Zhong Z, et al. 2019. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. Sci Total Environ. 670:1146–1158. doi:10.1016/j.scitotenv.2019.03.206.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Shahid M, Natasha Dumat C, Niazi N, Xiong T, Farooq A, Khalid S. 2020. Ecotoxicology of heavy metal(loid) enriched particulate matter: foliar accumulation by plants and health impacts. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. New York; London: Springer.
  • Shahid M, Niazi NK, Rinklebe J, Bundschuh J, Dumat C, Pinelli E. 2020. Trace elements-induced phytohormesis: a critical review and mechanistic interpretation. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2019.1689061.
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. Vol. 232. New York; London: Springer, p. 1–44.
  • Shahid M, Sabir M, Arif Ali M, Ghafoor A. 2014. Effect of organic amendments on phytoavailability of nickel and growth of berseem (Trifolium alexandrinum) under nickel contaminated soil conditions. Chem Speciation Bioavailability. 26:37–42. doi:10.3184/095422914X13886890590610.
  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 178:513–533. doi:10.1016/j.chemosphere.2017.03.074.
  • Sharma P, Bhardwaj R, Arora N, Arora H, Kumar A. 2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant. 52(4):767–770. doi:10.1007/s10535-008-0149-6.
  • Sihag S, Brar B, Joshi U. 2019. Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. Int J Phytoremediation. 21(4):293–304. doi:10.1080/15226514.2018.1524827.
  • Singh S, Prasad SM. 2019. Regulation of chromium toxicity tolerance in tomato and brinjal by calcium and sulfur through nitric oxide: involvement of enzymes of sulfur assimilation and the ascorbate-glutathione cycle. Environ Exp Bot. 166:103789. doi:10.1016/j.envexpbot.2019.06.002.
  • Sruthi P, Puthur JT. 2019. Characterization of physiochemical and anatomical features associated with enhanced phytostabilization of copper in Bruguiera cylindrica (L.) Blume. Int J Phytoremediation. 21(14):1423. doi:10.1080/15226514.2019.1633263.
  • Tammam A, Badr R, Abou-Zeid H, Hassan Y, Bader A. 2019. Nickel and ozone stresses induce differential growth, antioxidant activity and mRNA transcription in Oryza sativa cultivars. J Plant Interact. 14(1):87–101. doi:10.1080/17429145.2018.1556356.
  • Tang C, Zhang R, Hu X, Song J, Li B, Ou D, Hu X, Zhao Y. 2019. Exogenous spermidine elevating cadmium tolerance in Salix matsudana involves cadmium detoxification and antioxidant defense. Int J Phytoremediation. 21(4):305–315. doi:10.1080/15226514.2018.1524829.
  • Ulhassan Z, Gill RA, Ali S, Mwamba TM, Ali B, Wang J, Huang Q, Aziz R, Zhou W. 2019. Dual behavior of selenium: insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere. 225:329–341. doi:10.1016/j.chemosphere.2019.03.028.
  • Uruç Parlak K. 2016. Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS - Wageningen J Life Sci. 76:1–5. doi:10.1016/j.njas.2012.07.001.
  • Vale AP, Santos J, Melia N, Peixoto V, Brito NV, Oliveira M. 2015. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts. Food Control. 55:248–256. doi:10.1016/j.foodcont.2015.01.051.
  • van der Ent A, Tang Y-T, Sterckeman T, Echevarria G, Morel J-L, Qiu R-L. 2018. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil. 423(1–2):1–11. doi:10.1007/s11104-017-3539-8.
  • Vareda JP, Valente AJM, Durães L. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage. 246:101–118. doi:10.1016/j.jenvman.2019.05.126.
  • Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y. 2017. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot. 133:1–11. doi:10.1016/j.envexpbot.2016.09.005.
  • Yu X-Z, Lin Y-J, Zhang Q. 2019. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere. 220:300–313. doi:10.1016/j.chemosphere.2018.12.119.
  • Zaid A, Mohammad F, Wani SH, Siddique KM. 2019. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf. 180:575–587. doi:10.1016/j.ecoenv.2019.05.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.