624
Views
42
CrossRef citations to date
0
Altmetric
Articles

Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils

, &

References

  • Alloway BJ. 2013. Sources of heavy metals and metalloids in soils. In: Alloway BJ, editor. Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer. p. 11–50.
  • APHA. 1989. Standard methods for examination of water and wastewater. 17th ed. Washington (DC): American Public Health Association (APHA), AWWA, WPCF.
  • Back SK, Sung JH, Moon YH, Kim YH, Seok KS, Song GJ, Seo YC. 2017. Mercury distribution characteristics in primary manganese smelting plants. Environ Pollut. 227:357–363. doi:10.1016/j.envpol.2017.04.097.
  • Bharagava RN, Chandra R, Rai V. 2008. Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresour Technol. 99(17):8316–8324. doi:10.1016/j.biortech.2008.03.002.
  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M. 2012. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater. 231:36–42. doi:10.1016/j.jhazmat.2012.06.031.
  • Chandra R, Bharagava RN, Yadav S, Mohan D. 2009. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater. 162(2–3):1514–1521. doi:10.1016/j.jhazmat.2008.06.040.
  • Ciavatta L, Grimaldi M. 1968. The hydrolysis of mercury (II) chloride, HgCl2. J Inorg Nuc Chem. 30(2):563–581. doi:10.1016/0022-1902(68)80483-X.
  • Dar MI, Green ID, Naikoo MI, Khan FA, Ansari AA, Lone MI. 2017. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard–aphid–beetle food chain. Sci Total Environ. 584:1221–1229. doi:10.1016/j.scitotenv.2017.01.186.
  • Das M, Maiti SK. 2009. Growth of Cymbopogon citrates and Vetiveria zizanioides on Cu mine tailings amended with chicken manure and manure-soil mixtures: a pot scale study. Int J Phytoremediation. 11(8):651–663. doi:10.1080/15226510802568547.
  • de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J. 2012. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor. 123:3–7. doi:10.1016/j.gexplo.2012.04.013.
  • Fan W, Bai Z, Li H, Qiao J, Xu J, Li X. 2011. Potential ecological risk assessment of heavy metals in reclaimed soils. Trans CSAE. 27:348–354.
  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, et al. 2008. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol. 42(1):326–332. doi:10.1021/es071948x.
  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI. 2005. Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ. 346(1–3):200–212. doi:10.1016/j.scitotenv.2004.12.010.
  • Gentili R, Ambrosini R, Montagnani C, Caronni S, Citterio S. 2018. Effect of soil pH on the growth, reproductive investment and pollen allergenicity of Ambrosia artemisiifolia L. Front Plant Sci. 9:1335. doi:10.3389/fpls.2018.01335.
  • Han Y, Kingston HM, Boylan HM, Rahman GM, Shah S, Richter RC, Link DD, Bhandari S. 2003. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem. 375(3):428–436. doi:10.1007/s00216-002-1701-4.
  • Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJ, Duarte AC, Pardal MA, Pereira E. 2015. Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J. 281:759–770. doi:10.1016/j.cej.2015.07.013.
  • Hlodák M, Urík M, Matúš P, Kořenková L. 2016. Mercury in mercury (II)-spiked soils is highly susceptible to plant bioaccumulation. Int J Phytoremediation. 18(2):195–199. doi:10.1080/15226514.2015.1073675.
  • Hussein HS, Ruiz ON, Terry N, Daniell H. 2007. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol. 41(24):8439–8446. doi:10.1021/es070908q.
  • Jackson ML. 1958. Soil chemical analysis. Engle-Wood Cliffs (NT): Prentice Hall Inc.
  • Jedrzejczak R, Szteke B, Reczajska W. 1996. [Mercury determination in food of plant origin by cole vapour atomic absorption spectrometry (CVAAS)]). Rocz Panstw Zakl Hig. 47(2):223–230.
  • Kamble PN, Giri SP, Mane RS, Tiwana A. 2015. Estimation of chlorophyll content in young and adult leaves of some selected plants. Universal J Environ Res Technol. 5:306–310.
  • Karak T, Bhattacharyya P, Paul RK, Das DK. 2013. Metal accumulation, biochemical response and yield of Indian mustard grown in soil amended with rural roadside pond sediment. Ecotoxicol Environ Saf. 92:161–173. doi:10.1016/j.ecoenv.2013.03.019.
  • Kim KR, Owens G, Kwon SL. 2010. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. J Environ Sci. 22(1):98–105. doi:10.1016/S1001-0742(09)60080-2.
  • Kumar A, Maiti SK. 2015. Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of Chromite-Asbestos mine waste: a pot scale experiment. Int J Phytoremediation. 17 (5):437–447. doi:10.1080/15226514.2014.910174.
  • Lim JM, Salido AL, Butcher DJ. 2004. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J. 76(1–2):3–9. doi:10.1016/j.microc.2003.10.002.
  • Lionetto MG, Caricato R, Calisi A, Giordano ME, Erroi E, Schettino T. 2016. Biomonitoring of water and soil quality: a case study of ecotoxicological methodology application to the assessment of reclaimed agroindustrial wastewaters used for irrigation. Rend Fis Acc Lincei. 27(1):105–112. doi:10.1007/s12210-015-0486-2.
  • Liu J, Wang J, Ning Y, Yang S, Wang P, Shaheen SM, Feng X, Rinklebe J. 2019. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools. Environ Int. 129:461–469. doi:10.1016/j.envint.2019.04.068.
  • Liu Z, Wang LA, Xu J, Ding S, Feng X, Xiao H. 2017. Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol Eng. 106:273–278. doi:10.1016/j.ecoleng.2017.05.051.
  • Maiti SK, Jaiswal S. 2008. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess. 136(1–3):355–370. doi:10.1007/s10661-007-9691-5.
  • Maiti SK. 2013. Ecorestoration of coal mine degraded lands. New Delhi: Springer Science and Business Media, Springer India.
  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S. 2016. Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci. 48:120–125. doi:10.1016/j.jes.2015.10.036.
  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere. 127:58–63. doi:10.1016/j.chemosphere.2014.12.073.
  • Melgar MJ, Alonso J, García MA. 2009. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ. 407(20):5328–5334. doi:10.1016/j.scitotenv.2009.07.001.
  • Mishra VK, Tripathi BD, Kim KH. 2009. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater. 172(2–3):749–754. doi:10.1016/j.jhazmat.2009.07.059.
  • Moreno FN, Sígolo JB, Anderson CW, Stewart RB, Meech JA, Robinson BH. 2005. Phytoremediation of mercury contaminated mine wastes [PhD Thesis]. Palmerston North (New Zealand): Massey University.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Black CA, editor. Methods of soil analysis. Part 3. Chemical methods. Madison (WI): Soil Science of America and American Society of Agronomy. p. 961–1010.
  • Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM, Kim IS, Yoon HS. 2017. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J Plant Physiol. 215:39–47. doi:10.1016/j.jplph.2017.05.006.
  • Pisoschi AM, Pop A. 2015. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 97:55–74. doi:10.1016/j.ejmech.2015.04.040.
  • Raj D, Chowdhury A, Maiti SK. 2017. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: a case study from the eastern part of a Jharia coal field, India. Hum Ecol Risk Assess. 23(4):767–787. doi:10.1080/10807039.2016.1278519.
  • Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC. 2010. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere. 81(11):1369–1377. doi:10.1016/j.chemosphere.2010.09.030.
  • Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H. 2016. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula × P. alba) overexpressing gsh 1. Environ Pollut. 216:773–785. doi:10.1016/j.envpol.2016.06.047.
  • Sandrin TR, Hoffman DR. 2007. Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation. In: Environmental bioremediation technologies. Berlin, Heidelberg: Springer. p. 1–34.
  • Singh S, Sinha S. 2005. Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf. 62(1):118–127. doi:10.1016/j.ecoenv.2004.12.026.
  • Smith IK, Vierheller TL, Thorne CA. 1988. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem. 175(2):408–413. doi:10.1016/0003-2697(88)90564-7.
  • Su Y, Han FX, Chen J, Sridhar BM, Monts DL. 2008. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytoremediation. 10(6):547–560. doi:10.1080/15226510802115091.
  • Tu C, Ma LQ, Bondada B. 2002. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual. 31(5):1671–1675. doi:10.2134/jeq2002.1671.
  • USEPA. 2007. Method 7473: mercury in solids and solution by thermal decomposition, amalgamation and atomic absorption spectrophotometry. Washington (DC): USEPA.
  • Virkutyte J, Sillanpää M, Latostenmaa P. 2002. Electrokinetic soil remediation—critical overview. Sci Total Environ. 289(1–3):97–121. doi:10.1016/S0048-9697(01)01027-0.
  • Wang J, Anderson CW, Xing Y, Fan Y, Xia J, Shaheen SM, Rinklebe J, Feng X. 2018. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: spectroscopic investigations to define a mechanism for Hg uptake. Environ Pollut. 242:986–993. doi:10.1016/j.envpol.2018.07.065.
  • Wang J, Feng X, Anderson CW, Wang H, Zheng L, Hu T. 2012. Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol. 46(10):5361–5368. doi:10.1021/es204331a.
  • Wang J, Feng X, Anderson CW, Xing Y, Shang L. 2012. Remediation of mercury contaminated sites–a review. J Hazard Mater. 221:1–18. doi:10.1016/j.jhazmat.2012.04.035.
  • Wang J, Shaheen SM, Swertz AC, Rennert T, Feng X, Rinklebe J. 2019. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. J Hazard Mater. 371:687–693. doi:10.1016/j.jhazmat.2019.03.010.
  • Wang J, Xing Y, Xie Y, Meng Y, Xia J, Feng X. 2019. The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Sci Total Environ. 646:1615–1623. doi:10.1016/j.scitotenv.2018.07.225.
  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J. 2015. Sources and remediation techniques for mercury contaminated soil. Environ Int. 74:42–53. doi:10.1016/j.envint.2014.09.007.
  • Xun Y, Feng L, Li Y, Dong H. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere. 189:161–170. doi:10.1016/j.chemosphere.2017.09.055.
  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int. 31(5):755–762. doi:10.1016/j.envint.2005.02.004.
  • Yao DX, Meng J, Zhang ZG. 2010. Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. J Coal Sci Eng China. 16(3):316–319. doi:10.1007/s12404-010-0319-y.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zornoza P, Millán R, Sierra MJ, Seco A, Esteban E. 2010. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments. J Environ Sci. 22(3):421–427. doi:10.1016/S1001-0742(09)60124-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.