834
Views
27
CrossRef citations to date
0
Altmetric
Reviews

A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures

, , &

References

  • Ackerley DF, Gonzalez CF, Park CH, Ii RB, Next-Generation A, Ackerley DF, Gonzalez CF, Park CH, Ii RB, Keyhan M, et al. 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol. 70(2):873–882. doi:10.1128/AEM.70.2.873.
  • Agrawal A, Kumar V, Pandey BD. 2006. Remediation options for the treatment of electroplating and leather tanning effluent containing chromium – a review. Miner Process Extr Metall Rev. 27(2):99–130. doi:10.1080/08827500600563319.
  • Ahemad M. 2014. Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia Microbiol. 59(4):321–332. doi:10.1007/s12223-014-0304-8.
  • Ahemad M. 2015. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol. 13(1):51–58. doi:10.1016/j.jgeb.2015.02.001.
  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA. 2016. Remediation of wastewater using various nano-materials. Arab J Chem. 12(8):4897–4919. doi:10.1016/j.arabjc.2016.10.004.
  • Argulwar KVGR, Sudakaran S, Pulimi SV, Chandrasekaran M, Mukherjee NA. 2018. Nano-bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition. Environ Technol Innov. 9:122–133. doi:10.1016/j.eti.2017.11.006.
  • Arunbabu V, Indu KS, Ramasamy EV. 2017. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Manag. 68:329–336. doi:10.1016/j.wasman.2017.07.012.
  • Ashley K, Howe AM, Demange M, Nygren O. 2003. Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. J Environ Monitor. 5(5):707. doi:10.1039/b306105c.
  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J Hazard Mater. 224:1–12. doi:10.1016/j.jhazmat.2012.04.054.
  • Beaumont JJ, Sedman RM, Reynolds SD, Sherman CD, Li LH, Howd RA, Sandy MS, Zeise L, Alexeeff GV. 2008. Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology 19(1):12–23. doi:10.1097/EDE.0b013e31815cea4c.
  • Bharadwaj A, Ting YP. 2013. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: leaching mechanism and effect of decoking. Bioresour Technol. 130:673–680. doi:10.1016/j.biortech.2012.12.047.
  • Bharagava RN, Mishra S. 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf. 147:102–109. doi:10.1016/j.ecoenv.2017.08.040.
  • Biswas P, Karn AK, Balasubramanian P, Kale PG. 2017. Biosensor for detection of dissolved chromium in potable water: a review. Biosens Bioelectron. 94:589–604. doi:10.1016/j.bios.2017.03.043.
  • Bridge G. 2004. Contested terrain: mining and the environment. Annu Rev Environ Resour. 29(1):205–259. doi:10.1146/annurev.energy.28.011503.163434.
  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ. 2010. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol. 101(15):5862–5867. doi:10.1016/j.biortech.2010.03.027.
  • Bvrith MV, Reddy VB. 2013. An overview on research trends in remediation of chromium. Res J Recent Sci. 2:71–83.
  • Chen JM, Hao OJ, Chen JM, Hao OJ. 1998. Microbial chromium (VI) reduction microbial chromium (VI) reduction. Crit Rev Environ Sci Technol. 28(3):219–251. doi:10.1080/10643389891254214.
  • Chen SY, Lin PL. 2010. Optimization of operating parameters for the metal bioleaching process of contaminated soil. Sep Purif Technol. 71(2):178–185. doi:10.1016/j.seppur.2009.11.018.
  • Cheung KH, Gu JD. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad. 59(1):8–15. doi:10.1016/j.ibiod.2006.05.002.
  • Choppala G, Bolan N, Park JH. 2013. Chapter two – chromium contamination and its risk management in complex environmental settings. Adv Agron. 120:129–172. doi:10.1016/B978-0-12-407686-0.00002-6.
  • Coelho PCS, Teixeira JPF, Gonçalves ONBSM. 2011. Mining activities: health impacts. Encycl Environ Heal. 2011:788–802. doi:10.1016/B978-0-444-52272-6.00488-8.
  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater. 146(1–2):270–277. doi:10.1016/j.jhazmat.2006.12.017.
  • Das A, Singh S. 2011. Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med. 15(1):6. doi:10.4103/0019-5278.82998.
  • Das S, Ram SS, Sahu HK, Rao DS, Chakraborty A, Sudarshan M, Thatoi HN. 2013. A study on soil physico-chemical, microbial and metal content in Sukinda chromite mine of Odisha, India. Environ Earth Sci. 69(8):2487–2497. doi:10.1007/s12665-012-2074-4.
  • De Oliveira Andrade JJ, Mattje V. 2012. Incorporation of chromium-tanned leather residue in mortars. Proc Inst Civ Eng - Constr Mater. 165(2):73–87. doi:10.1680/coma.10.00026.
  • Dehghani MH, Sanaei D, Ali I, Bhatnagar A. 2016. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J Mol Liq. 215:671–679. doi:10.1016/j.molliq.2015.12.057.
  • Demirbas E, Kobya M, Senturk E, Ozkan T. 2004. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. WSA. 30:533–539. doi:10.4314/wsa.v30i4.5106.
  • Dey S, Paul AK. 2015. Hexavalent chromate reduction during growth and by immobilized cells of Arthrobacter sp. SUK 1205. Sci Technol Dev. 34:158–168. doi:10.3923/std.2015.158.168.
  • Dhal B, Abhilash  , Pandey BD. 2018. Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent. Sustain Environ Res. 28:289–297. doi:10.1016/j.serj.2018.05.002.
  • Dhal B, Das NN, Pandey BD, Thatoi HN. 2011. Environmental quality of the Boula-Nuasahi Chromite mine area in India. Mine Water Environ. 30(3):191–196. doi:10.1007/s10230-010-0134.
  • Dhal B, Das NN, Thatoi HN, Pandey BD. 2013. Characterizing toxic Cr (VI) contamination in chromite mine overburden dump and its bacterial remediation. J Hazard Mater. 260:141–149. doi:10.1016/j.jhazmat.2013.04.050.
  • Diwan H, Ahmad A, Iqbal M. 2008. Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manage. 41(5):734–741. doi:10.1007/s00267-007-9020-3.
  • Dubey CS, Sahoo BK, Nayak NR. 2001. Chromium (VI) in waters in parts of Sukinda chromite valley and health hazards, Orissa, India. Bull Environ Contam Toxicol. 67(4):541–548. doi:10.1007/s001280157.
  • Enniya I, Rghioui L, Jourani A. 2018. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm. 7:9–16. doi:10.1016/j.scp.2017.11.003.
  • Ertani A, Mietto A, Borin M, Nardi S. 2017. Chromium in agricultural soils and crops: a review. Water Air Soil Pollut. 228:190. doi:10.1007/s11270-017-3356-y.
  • Eslami J, Khaniki G, Nurani M, Mehrasbi M, Peyda M, Azimi R. 2007. Heavy metals in edible green vegetables grown along the sites. J Biol Sci. 6:943–948. doi:10.3923/jbs.2007.943.948.
  • Fu F, Ma J, Xie L, Tang B, Han W, Lin S. 2013. Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manage. 128:822–827. doi:10.1016/j.jenvman.2013.06.044.
  • Fu R, Wen D, Xia X, Zhang W, Gu Y. 2017. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J. 316:601–608. doi:10.1016/j.cej.2017.01.092.
  • Gardea-Torresdey JL, De La Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I. 2005. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol. 48(2):225–232. doi:10.1007/s00244-003-0162-x.
  • Garg UK, Kaur MP, Garg VK, Sud D. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater. 140(1–2):60–68. doi:10.1016/j.jhazmat.2006.06.056.
  • Gong Y, Werth CJ, He Y, Su Y, Zhang Y, Zhou X 2018. Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA. Environ Pollut. 240:485–492. doi:10.1016/j.envpol.2018.04.046.
  • Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H. 2015. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 75:224–248. doi:10.1016/j.watres.2015.02.034.
  • Gupta VK, Shrivastava AK, Jain N. 2001. Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res. 35(17):4079–4085. doi:10.1016/S0043-1354(01)00138-5.
  • Hamdan SS, El-Naas MH. 2014. Characterization of the removal of Chromium(VI) from groundwater by electrocoagulation. J Ind Eng Chem. 20(5):2775–2781. doi:10.1016/j.jiec.2013.11.006.
  • Han L, Mao D, Huang Y, Zheng L, Su Y, Sun S. 2017. Fabrication of unique Tin(IV) sulfide/graphene oxide for photocatalytically treating chromium(VI)-containing wastewater. J Clean Prod. 168:519–525. doi:10.1016/j.jclepro.2017.09.027.
  • Han X, Shan Y, Hung M, Fung N, Tam Y. 2007. Biosorption and bioreduction of Cr (VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater. 146(1–2):65–72. doi:10.1016/j.jhazmat.2006.11.053.
  • Hartman HL, Mutmansky JM. 2002. Introduction to mining. In: Introductory Mining Engineering. New York: Wiley. p. 1–24.
  • Harish R, Samuel J, Mishra R, Chandrasekaran N, Mukherjee A. 2012. Bio-reduction of Cr (VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation. 23:487–496. doi:10.1007/s10532-011-9527-4.
  • Hong K, Tokunaga S, Kajluchi T. 2002. Evaluation of remediation process with plant-derived biosrfactant for recovery of heavy metals from contaminated soils. Chemosphere. 43:379–387. doi:10.1016/S0045-6535(02)00321-1.
  • Hou S, Wu B, Peng D, Wang Z, Wang Y, Xu H. 2019. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Env Pollu. 252:553–561. doi:10.1016/j.envpol.2019.05.083.
  • Huang R, Huang K, Lin Z, Wang J, Lin C, Kuo Y. 2013. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. J Environ Manage. 129:586–592. doi:10.1016/j.jenvman.2013.08.019.
  • Hyder AHMG, Begum SA, Egiebor NO. 2015. Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J Environ Chem Eng. 3(2):1329–1336. doi:10.1016/j.jece.2014.12.005.
  • Ibrahim ASS, Elbadawi YB, El-Tayeb MA, Al-Salamah AA. 2012. Hexavalent chromium reduction by novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr9a. Afr J Biotechnol. 11:3832–3841. doi:10.5897/AJB11.3026.
  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA. 2011. Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. Afr J Biotechnol. 10:7207–7218. doi:10.5897/AJB11.1030.
  • Indian Bureau of Mines. 2016. Indian Minerals Yearbook 2015. Indian Miner. Yearb. 2015 (Part-III Miner). Rev. 54th Editi, 1–9.
  • Islam MA, Angove MJ, Morton DW. 2019. Recent innovative research on chromium (VI) adsorption mechanism. Environ Nanotechnol Monit Manag. 12:100267.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • January MC, Cutright TJ, Keulen H, Van Wei R. 2008. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere. 70(3):531–537. doi:10.1016/j.chemosphere.2007.06.066.
  • Joutey NT, Sayel H, Bahafid W, Ghachtouli E. 2015. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol. 233:45–70. doi: 10.1007/978-3-319-10479-9.
  • Kang SY, Lee JU, Moon SH, Kim KW. 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere. 56(2):141–147. doi:10.1016/j.chemosphere.2004.02.004.
  • Karimi N. 2013. Comparative phytoremediation of chromium-contaminated soils by Alfalfa (Medicago sativa) and Sorghum bicolor (L) Moench. IJSRES. 1:44–49. doi:10.12983/ijsres-2013-p044-049.
  • Kim C, Zhou Q, Deng B, Thornton EC, Xu H 2001. Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics. Environ Sci Technol. 35(11):2219–2225. doi:10.1021/es0017007.
  • Kim Y, Roh Y. 2019. Environmental application of biogenic magnetite nanoparticles to remediate chromium (III/VI) contaminated water. Minerals. 9(5):260. doi:10.3390/min9050260.
  • Ksheminska H, Fedorovych D, Honchar T, Ivash M, Gonchar M. 2008. Yeast tolerance to chromium depends on extracellular chromate reduction and Cr (III) Chelation. Food Technol Biotechnol. 46:419–426.
  • Ksheminska HP, Honchar TM, Gayda GZ, Gonchar MV. 2006. Extra-cellular chromate-reducing activity of the yeast cultures. Cental Eur J Biol. 1:137–149. doi:10.2478/s11535-006-0009-3.
  • Kumar R, Bishnoi NR, Bishnoi K. 2008. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J. 135:202–208. doi:10.1016/j.cej.2007.03.004.
  • Kumar V, Dwivedi SK. 2019. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere. 237:124567. doi:10.1016/j.chemosphere.2019.124567.
  • Losi ME, Frankenberger WT. 1994. Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut. 74:405–413.
  • Lu X, Li B, Guo L, Zhang G, Wang P. 2019. Reduction and stabilization remediation of hexavalent Chromium (Cr6+)-contaminated soil. Ekoloji. 28(107):973–980.
  • Lv X, Xu J, Jiang G, Tang J, Xu X. 2012. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J Colloid Interface Sci. 369(1):460–469. doi:10.1016/j.jcis.2011.11.049.
  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N. 1998. Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol. 32(20):3087–3093. doi:10.1021/es980089x.
  • Maitlo HA, Kim KH, Kumar V, Kim S, Park JW. 2019. Nanomaterials-based treatment options for chromium in aqueous environments. Environ Int. 130:104748. doi:10.1016/j.envint.2019.04.020.
  • Mala J, Dhanasingh S, Rose C. 2014. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res. 170:235–241.
  • Mangkoedihardjo S, Ratnawati R, Alfianti N. 2008. Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J. 4:338–342.
  • Mant C, Costa S, Williams J, Tambourgi E. 2006. Phytoremediation of chromium by model constructed wetland. Bioresour Technol. 97(15):1767–1772. doi:10.1016/j.biortech.2005.09.010.
  • Matrosova EA, Bobrov AV, Bindi L. 2020. Basics of geochemistry and mineralogy of chromium. In: Geochemistry of chromium in the earth’s mantle. Cham: Springer. p. 5–36
  • Ministry of Mines, Government of India. 2013. Monograph on chromite. https://doi.org/https://ibm.gov.in/writereaddata/files/09162014114959Monograph_Chromite.pdf.
  • Ministry of Mines, India. 2017. Annual report. https://www.mines.gov.in/writereaddata/UploadFile/Mines_AR_2016-17_English.pdf.
  • Mishra D, Rhee Y. 2010. Current research trends of microbiological leaching for metal recovery from industrial wastes. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol. 2:1289–1296.
  • Mishra H, Sahu HB. 2013. Environmental scenario of chromite mining at Sukinda Valley – a review. Int J Environ Eng Manag. 4:287–292.
  • Mishra SR, Pradhan RP, Prusty BAK, Sahu SK. 2016. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world. Environ Monit Assess. 188:1–17. doi:10.1007/s10661-016-5393-1.
  • Mitra S, Sarkar A, Sen S. 2017. Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol Environ Eng. 2(1):11. doi:10.1007/s41204-017-0022-y.
  • Mohanty JK, Rao DS, Paul AK, Khaoash S. 2009. Characterization of high magnesian rocks for suitability as flux in iron and steel industry. J Geol Min Res. 1:149–155.
  • Mukherjee K, Ghosh D, Saha B. 2014. Surfactant assisted enhancement of bioremediation rate for hexavalent chromium by water extract of Siris (Albizia lebbeck) sawdust. TSD. 51(6):521–527. doi:10.3139/113.110338.
  • Mukherjee K, Nandi R, Saha D, Saha B. 2015. Surfactant-assisted enhancement of bioremediation rate for hexavalent chromium by water extract of Sajina (Moringa oleifera) flower. Desalin Water Treat. 54(2):525–532. doi:10.1080/19443994.2014.884477.
  • Mukherjee K, Nandi R, Saha D, Saha B. 2016. Surfactant-assisted bioremediation of hexavalent chromium from contaminated water. Desalin Water Treat. 53(3):746–751. doi:10.1080/19443994.2013.842503.
  • Mukherjee K, Saha R, Ghosh A, Ghosh SK, Maji PK, Saha B. 2014. Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasse. Res Chem Intermed. 40(4):1727–1734. doi:10.1007/s11164-013-1077-4.
  • Murugavelh KM. 2013. Bioreduction of chromate by immobilized cells of Halomonas sp. Int J Energy Environ. 4:349–356.
  • Nandi R, Laskar S, Saha B. 2017. Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed. 43(3):1619–1634. doi:10.1007/s11164-016-2719-0.
  • Nareshkumar R, Nagendran R, Parvathi K. 2007. Microbial solubilization of heavy metals from soil using indigenous sulfur oxidizing bacterium: effects of sulfur/soil ratio. J Sci Ind Res. 66:680–683.
  • Naz A, Chowdhury A, Mishra BK, Gupta SK. 2016. Metal pollution in water environment and the associated human health risk from drinking water: a case study of Sukinda chromite mine, India. Hum Ecol Risk Assess An Int J. 22(7):1433–1455. doi:10.1080/10807039.2016.1185355.
  • Opperman DJ, Sewell BT, Litthauer D, Isupov MN, Littlechild JA, Van Heerden E. 2010. Biochemical and biophysical research communications crystal structure of a thermostable Old Yellow enzyme from Thermus scotoductus SA-01. Biochem Biophys Res Commun. 393(3):426–431. doi:10.1016/j.bbrc.2010.02.011.
  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T. 2004. Biosorption of chromium (VI), cadmium (II) and copper (II) by Pantoea sp. TEM18. Chem Eng J. 102(3):249–253. doi:10.1016/j.cej.2004.01.032.
  • Ozturk S, Kaya T, Aslim B, Tan S. 2012. Removal and reduction of chromium by Pseudomonas sp. and their correlation to rhamnolipid production. J Hazard Mater. 232:64–69. doi:10.1016/j.jhazmat.2012.06.038.
  • Pakade VE, Tavengwa NT, Madikizela LM. 2019. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 9(45):26142–26164. doi:10.1039/C9RA05188K.
  • Pal A, Datta S, Paul AK. 2013. Hexavalent chromium reduction by immobilized cells of Bacillus sphaericus AND 303. Braz Arch Biol Technol. 56(3):505–512. doi:10.1590/S1516-89132013000300019.
  • Pang Y, Zeng G, Tang L, Zhang Y, Liu Y, Lei X, Wu M, Li Z, Liu C. 2011. Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/Sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol. 102(22):10733–10736. doi:10.1016/j.biortech.2011.08.078.
  • Park D, Yun Y, Hye J, Moon J. 2005. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 39(4):533–540. doi:10.1016/j.watres.2004.11.002.
  • Pathak A, Dastidar MG, Sreekrishnan TR. 2008a. Bioleaching of heavy metals from anaerobically digested sewage sludge Bioleaching of heavy metals from anaerobically digested sewage sludge. J Environ Sci Heal A. 4529:402–411. doi:10.1080/10934520701795624.
  • Pathak A, Dastidar MG, Sreekrishnan TR. 2008b. Bioleaching of heavy metals from anaerobically digested sewage sludge. J Environ Sci Heal A. 43(4):402–411. doi:10.1080/10934520701795624.
  • Pathak A, Dastidar MG, Sreekrishnan TR. 2009. Bioleaching of heavy metals from sewage sludge: a review. J Environ Manage. 90(8):2343–2353. doi:10.1016/j.jenvman.2008.11.005.
  • Pradhan D, Behari L, Sawyer M, Rahman PKSM. 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem. 55:1–20. doi:10.1016/j.jiec.2017.06.040.
  • Qu M, Chen J, Huang Q, Chen J, Xu Y, Luo J, Wang K, Gao W, Zheng Y. 2016. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. Int Biodeterior Biodegrad. 128:41–47. doi:10.1016/j.ibiod.2016.08.022.
  • Qu M, Li W, Zhang C, Huang B, Zhao Y. 2015. Assessing the pollution risk of soil chromium based on loading capacity of paddy soil at a regional scale. Sci Rep. 5:1–8. doi:10.1038/srep18451.
  • Qu Z, Yan L, Li L, Xu J, Liu M, Li Z, Yan N. 2014. Ultra effective ZnS nanocrystals sorbent for mercury (II) removal based on size-dependent cation exchange. ACS Appl Mater Interfaces. 6(20):18026–18032. doi:10.1021/am504896w.
  • Quaggiotti S, Barcaccia G, Schiavon M, Nicolé S, Galla G, Rossignolo V, Soattin M, Malagoli M. 2007. Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Gene. 402(1–2):68–80. doi:10.1016/j.gene.2007.07.021.
  • Ramana S, Biswas AK, Singh AB, Ahirwar NK. 2012. Phytoremediation of chromium by tuberose. Natl Acad Sci Lett. 35:71–73. doi:10.1007/s40009-012-0016-z.
  • Rana P, Mohan N, Rajagopal C. 2004. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res. 38(12):2811–2820. doi:10.1016/j.watres.2004.02.029.
  • Rangabhashiyam S, Balasubramanian P. 2018a. Biosorption of hexavalent chromium and malachite green from aqueous effluents, using Cladophora sp. Chem Ecol. 34(4):371–390. doi:10.1080/02757540.2018.1427232.
  • Rangabhashiyam S, Balasubramanian P. 2018b. Adsorption behaviors of hazardous methylene blue and hexavalent chromium on novel materials derived from Pterospermum acerifolium shells. J Mol Liq. 254:433–445. doi:10.1016/j.molliq.2018.01.131.
  • Rastegar SO, Mousavi SM, Shojaosadati SA. 2014. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresour Technol. 167:61–68. doi:10.1016/j.biortech.2014.05.107.
  • Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR. 2011. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater. 185(2–3):862–869. doi:10.1016/j.jhazmat.2010.09.101.
  • Reichl C, Schatz M, Zsak G. 2016. World mining data. Fed Minist Sci Res Econ Austria. 31:1–255.
  • Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil – pH as the master variable. Appl Geochemistry. 74:84–93. doi:10.1016/j.apgeochem.2016.08.017.
  • Revathi K, Haribabu TE, Sudha PN. 2011. Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci. 2(2):417.
  • Rezaei H. 2016. Biosorption of chromium by using Spirulina sp. Arab J Chem. 9(6):846–853. doi:10.1016/j.arabjc.2013.11.008.
  • Saha B, Orvig C. 2010. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev. 254(23–24):2959–2972. https://. doi:10.1016/j.ccr.2010.06.005.
  • Saha R, Nandi R, Saha B. 2011. Sources and toxicity of hexavalent chromium. J Coord Chem. 64(10):1782–1806. doi:10.1080/00958972.2011.583646.
  • Sahinkaya E, Altun M, Bektas S, Komnitsas K. 2012. Bioreduction of Cr(VI) from acidic wastewaters in a sulfidogenic ABR. Miner Eng. 32:38–44. doi:10.1016/j.mineng.2012.03.014.
  • Sakulthaew C, Chokejaroenrat C, Poapolathep A, Satapanajaru T, Poapolathep S. 2017. Chemosphere hexavalent chromium adsorption from aqueous solution using carbon. Chemosphere. 184:1168–1174. doi:10.1016/j.chemosphere.2017.06.094.
  • Samuel J, Paul ML, Pulimi M, Nirmala MJ, Chandrasekaran N, Mukherjee A. 2012. Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind Eng Chem Res. 51(9):3740–3749. doi:10.1021/ie201796s.
  • Saviour MN. 2012. Environmental impact of soil and sand mining: a review. Int J Sci Environ Technol. 1:125–134.
  • Shams KM, Tichy G, Fischer A, Sager M, Peer T, Bashar A, Filip K. 2010. Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil. 328(1–2):175–189. doi:10.1007/s11104-009-0095-x.
  • Shang J, Zong M, Yu Y, Kong X, Du Q, Liao Q. 2017. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. J Environ Manage. 197:331–337. doi:10.1016/j.jenvman.2017.03.085.
  • Sharma S, Adholeya A. 2011. Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int Biodeterior Biodegrad. 65(2):309–317. doi:10.1016/j.ibiod.2010.12.003.
  • Sharma P, Bihari V, Agarwal SK, Verma V, Kesavachandran CN, Pangtey BS, Mathur N, Singh KP, Srivastava M, Goel SK. 2012. Groundwater Contaminated with hexavalent Chromium [Cr (VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS One. 7(10):e47877–9. doi:10.1371/journal.pone.0047877.
  • Shinghal AMADS. 2015. Biosorption of chromium (VI) from aqueous solutions using waste plant biomass. Int J Environ Sci Technol. 12:1415–1426. doi:10.1007/s13762-014-0516-0.
  • Sierra-Alvarez R. 2009. Removal of copper, chromium and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching. Waste Manag. 29(6):1885–1891. doi:10.1016/j.wasman.2008.12.015.
  • Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR. 2015. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta. 148:442–456. doi:10.1016/j.gca.2014.10.012.
  • Singh R, Misra V, Singh RP. 2011. Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res. 13(9):4063–4073. doi:10.1007/s11051-011-0350-y.
  • Soni K, Vyas N, 2015. A Study of occupational health and safety related practices in mining companies of southern Rajasthan: a systematic review. Int J Adv Res Innov Ideas Educ. 1:92–103.
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L, 2010. Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress; (ii) Phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 333(8):597–607. doi:10.1016/j.crvi.2010.03.002.
  • Talib NSR, Halmi MIE, Ghani SSA, Zaidan UH, Shukor MYA, 2019. Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) approach for modelling the optimization of Chromium (VI) reduction by newly isolated Acinetobacter radioresistens Strain NS-MIE from agricultural soil. BioMed Res Int. 2019:1–14. doi:10.1155/2019/5785387.
  • Tamilselvan N, Saurav K, Kannabiran K, 2012. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass. J Ocean Univ China . 11(1):52–58. doi:10.1007/s11802-012-1843-8.
  • Turgut C, Pepe MK, Cutright TJ, 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut. 131(1):147–154. doi:10.1016/j.envpol.2004.01.017.
  • Tyagi M, da Fonseca MMR, de Carvalho CCCR, 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241. doi:10.1007/s10532-010-9394-4.
  • U.S. Geological Survey (USGS). 2015. Mineral Commodity Summaries 2015. p. 1–196. doi:10.3133/70140094.
  • U.S. Geological Survey (USGS) 2018. Mineral Commodity Summaries 2018. U.S. Geological Survey. doi:10.3133/70194932.
  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF, 2002. Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour Technol. 85:155–158. doi:10.1016/S0960-8524(02)00086-X.
  • Ullah I, Nadeem R, Iqbal M, Manzoor Q, 2013. Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol Eng. 60:99–107. doi:10.1016/j.ecoleng.2013.07.028.
  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN, 2001. Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery. Bull Environ Contam Toxicol. 67:246–256. doi:10.1007/s00128-001-0117-8.
  • Vankar PS, Bajpai D, 2008. Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Desalination 222(1–3):255–262. doi:10.1016/j.desal.2007.01.168.
  • Varma S, Sarode D, Wakale S, Bhanvase BA, Deosarkar MP, 2013. Removal of Nickel from waste water using Graphene Nanocomposite. Int J Chem Phys Sci. 2:132–139.
  • Vendruscolo F, Luiz G, Roberto N, Filho A, 2016. Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegrad. 119:87–95.
  • Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X, 2010. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol. 114(1–4):35–42. doi:10.1016/j.jconhyd.2010.02.006.
  • Whitaker AH, Pena J, Amor M, Duckworth OW, 2018. Cr(VI) uptake and reduction by biogenic iron (oxyhydr)oxides. Environ Sci Processes Impacts. 20:1056–1068. doi:10.1039/C8EM00149A.
  • WHO. 2012. Guidelines for drinking-water quality. 4th ed. Geneva: World Health Organization.
  • Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H. 2019. A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol. 49(12):1027–1078.
  • Xiao W, Ye X, Yang X, Zhu Z, Sun C, Zhang Q, 2017. Isolation and characterization of chromium (VI) – reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremediat J. 21:100–108. doi:10.1080/10889868.2017.1282939.
  • Yang H, Feng S, Xin Y, Wang W, 2014. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp. Bioresour Technol. 154:185–191. doi:10.1016/j.biortech.2013.12.036.
  • Yang J, Yu M, Chen W, 2015. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J Ind Eng Chem. 21:414–422. doi:10.1016/j.jiec.2014.02.054.
  • Yang WP, Zhang ZJ, Deng W, 2003. Simultaneous, sensitive and selective on-line chemiluminescence determination of Cr(III) and Cr(VI) by capillary electrophoresis. Anal Chim Acta. 485(2):169–177. doi:10.1016/S0003-2670(03)00421-5.
  • Zayed AM, Terry N, 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil. 249(1):139–156.
  • Zeng J, Gou M, Tang Y, Li G, Sun Z, Kida K, 2016. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour Technol. 218:859–866. doi:10.1016/j.biortech.2016.07.051.
  • Zhang J, Han Z, Teng B, Chen W, 2017. Biodeterioration process of chromium tanned leather with Penicillium sp. Int Biodeterior Biodegrad. 116:104–111. doi:10.1016/j.ibiod.2016.10.019.
  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ, 2007. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere. 67(6):1138–1143. doi:10.1016/j.chemosphere.2006.11.014.
  • Zhao Z, An H, Lin J, Feng M, Murugadoss V, Ding T, Liu H, Shao Q, Mai X, Wang N, et al. 2019. Progress on the photocatalytic reduction removal of chromium contamination. Chem Rec. 19(5):873–882.
  • Zhou L, Li R, Zhang G, Wang D, Cai D, Wu Z, Li R, Zhang G, Wang D, Cai D, et al. 2018. Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem Eng J. 339:85–96. doi:10.1016/j.cej.2018.01.132.
  • Zhu YL, Zayed AM, Qian J‐H, Souza M, Terry N, 1999. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual. 28(1):339–344. doi:10.2134/jeq1999.00472425002800010042x.
  • Zou L, Liu P, Li X, 2013. New advances in molecular mechanism of microbial hexavalent chromium reduction. Int J Biotechnol Food Sci. 1:46–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.