264
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

In vitro lead tolerance and accumulation in three Chrysanthemum cultivars for phytoremediation purposes with ornamental plants

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdullah S, Sarem SM. 2010. The potential of Chrysanthemum and Pelargonium for phytoextraction of lead-contaminated soils. Jordan J Civ Eng. 4:409–416.
  • Aman MS, Jafari M, Reihan MK, Motesharezadeh B. 2018. Assessing some shrub species for phytoremediation of soils contaminated with lead and zinc. Environ Earth Sci. 77(3):82. doi:10.1007/s12665-018-7256-2.
  • Ang LH, Tang LK, Ho WM, Hui TF, Theseira GW. 2010. Phytoremediation of Cd and Pb by four tropical timber species grown on an ex-tin mine in Peninsular Malaysia. Int Sch Sci Res Innov. 4(2):70–74. doi:10.5281/zenodo.1061521.
  • Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery. 1:811–826.
  • Bech J, Poschenrieder C, Barceló J, Lansac A. 2002. Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnol. 22(1–2):5–11. doi:10.1002/1521-3846(200205)22:1/2<5::AID-ABIO5>3.0.CO;2-B.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300. doi:10.2307/2346101.
  • Blacksmith Institute. 2006. Project completion report: used lead acid bacteria site remediation. New York (USA): Blacksmith Institute [accessed 2019 Sep 5]. https://web.archive.org/web/20061103005328/http://www.blacksmithinstitute.org/site10c.php.
  • Brickell CD, Alexande C, David JC, Hetterscheid WLA, Leslie AC, Malecot V, Xiaobai Jin Cubey JJ. 2009. International code of nomenclature for cultivated plants (ICNCP). Eigth Edition. Scri Hortic. 10:1–184. [accessed 2019 Sep 5]. http://www.actahort.org/chronica/pdf/sh_10.pdf.
  • Cao Y, Huang R, Cao Z. 2005. Effects of Pb stress on the physiological and biochemical traits of maize. J Maize Sci. 13(3):61–64.
  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. 1997. Phytoremediation of soil metals. Curr Opin Biotechnol. 8(3):279–284. doi:10.1016/S0958-1669(97)80004-3.
  • Chaturvedi N, Ahmed MJ, Dhal NK. 2014. Effects of iron ore tailings on growth and physiological activities of Tagetes patula L. J Soils Sediments. 14(4):721–730. doi:10.1007/s11368-013-0777-0.
  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C. 2014. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem. 68:300–308. doi:10.1016/j.soilbio.2013.10.021.
  • Chen M, Zhang LL, Li J, He XJ, Cai JC. 2015. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicol Environ Saf. 122:313–321. doi:10.1016/j.ecoenv.2015.08.007.
  • Chintakovid W, Visoottiviseth P, Khokiattiwong S, Lauengsuchonkul S. 2008. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere. 70(8):1532–1537. doi:10.1016/j.chemosphere.2007.08.031.
  • Conover WJ, Iman RL. 1979. On multiple – comparison procedures. Technical report, LA-7677-MS, Los Alamos Scientific Laboratory; [accessed 2016 Nov 18]. https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-07677-MS.
  • Cui S, Zhang T, Zhao S, Li P, Zhou Q, Zhang Q, Han Q. 2013. Evaluation of three ornamental plants for phytoremediation of Pb-contaminated soil. Int J Phytoremediation. 15(4):299–306. doi:10.1080/15226514.2012.694502.
  • Cunningham SD, Berti WR. 2000. Phytoextraction and phytostabilization: technical, economic, and regulatory considerations Chrysanthemum indicum of the soil–lead issue. In: Terry N, Bañuelos GS, editors. Phytoremediation of contaminated soil and water. Boca Ratón (FL): Lewis Publisher, CRC Press. p. 359–376.
  • Dey S, Dey J, Patra S, Pothal D. 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol. 19(1):53–60. doi:10.1590/S1677-04202007000100006.
  • Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C. 2011. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res Int. 18(1):82–90. doi:10.1007/s11356-010-0354-7.
  • Eun SO, Youn HS, Lee Y. 2000. Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant. 110(3):357–365. doi:10.1111/j.1399-3054.2000.1100310.x.
  • Fahr M, Laplaze L, Bendaou N, Hocher V. E, Mzibri M, Bogusz D, Smouni A. 2013. Effect of lead on root growth. Front Plant Sci. 4:175. doi:10.3389/fpls.2013.00175.
  • Felek W, Mekibib F, Admassu B. 2015. Optimization of explants surface sterilization condition for field grown peach (Prunus persica L. Batsch. Cv. Garnem) intended for in vitro culture. Afr J Biotechnol. 14(8):657–660. doi:10.5897/AJB2014.14266.
  • Gallego SM, Benavides MP, Tomaro ML. 1996. Effect of heavy metal ion excess in sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121(2):151–159. doi:10.1016/S0168-9452(96)04528-1.
  • García Fernández G, Angeler DG. 2001. Plantas restauradoras para recuperar ambientes contaminados. Quercus. 182:24–27.
  • García G, Faz Á, Cunha M. 2004. Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int Biodeterior Biodegradation. 54(2):245–250. doi:10.1016/j.ibiod.2004.06.004.
  • García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM. 2012. Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut. 223(2):559–572. doi:10.1007/s11270-011-0882-x.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Env Res. 3(1):1–18. doi:10.15666/aeer/0301_001018.
  • Godwin PM, Pan Y, Xiao H, Afzal MT. 2019. Progress in the preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J Bioresour Bioprod. 4(1):31–42. doi:10.21967/jbb.v4i1.180.
  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M. 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater. 177(1–3):437–444. doi:10.1016/j.jhazmat.2009.12.052.
  • Hu R, Sun K, Su X, Pan YX, Zhang YF, Wang XP. 2012. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerine Bunge and Chenopodium album L. J Hazard Mater. 205–206:131–138. doi:10.1016/j.jhazmat.2011.12.051.
  • Hussain A, Abbas N, Arshad F. 2013. Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agric Sci. 4(5):262–265. doi:10.4236/as.2013.45037.
  • Kališová-Špirochová I, Punčochářová J, Kafka Z, Kubal M, Soudek P, Vaněk T. 2003. Accumulation of heavy metals by in vitro cultures of plants. Water Air Soil Pollut Focus. 3(3):269–276. doi:10.1023/A:1023933902452.
  • Kaur R, Bhatti SS, Singh S, Singh J, Singh S. 2018. Phytoremediation of heavy metals using cotton plant: a field analysis. Bull Environ Contam Toxicol. 101(5):637–643. doi:10.1007/s00128-018-2472-8.
  • Kaur G, Singh HP, Batish DR, Kohli RK. 2013. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma. 1:53–62. doi:10.1007/s00709-011-0372-4.
  • Khillare PS, Jyethi DS, Sarkar S. 2012. Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food Chem Toxicol. 50(5):1642–1652. doi:10.1016/j.fct.2012.01.032.
  • Lajayer BA, Moghadam NK, Maghsoodi MR, Ghorbanpour M, Kariman K. 2019. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res. 26:8468–8484. doi:10.1007/s11356-019-04241-y.
  • LeDuc DL, Terry N. 2005. Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol. 32(11–12):514–520. doi:10.1007/s10295-005-0227-0.
  • Li MS, Luo YP, Su ZY. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut. 147(1):168–175. doi:10.1016/j.envpol.2006.08.006.
  • Liu JN, Zhou QX, Sun T, Ma LQ, Wang S. 2008. Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull Environ Contam Toxicol. 80(3):260–265. doi:10.1007/s00128-008-9357-1.
  • Malecka A, Piechalak A, Tomaszewska B. 2009. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant. 31(5):1053–1063. doi:10.1007/s11738-009-0326-z.
  • Mani D, Kumar C, Patel NK, Sivakumar D. 2015. Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J Environ Sci Technol. 12(4):1211–1222. doi:10.1007/s13762-013-0488-5.
  • Manousaki E, Kadukova J, Kalogerakis N. 2008. Phytoextraction and phytoexcretion of Cd and Pb by the salt cedar (Tamarix smyrensis Bunge): a new combined phytoremediation process. In: Management Committee Meeting, editor. COST Action 859, Meeting of working group 4, Phytotechnologies in practice – biomass production, agricultural methods, legacy, legal and economic aspects, Book of abstracts, October 15–17. Verneuil-en-Halatte (France): Ineris. p. 22.
  • McCartor A, Becker D. 2010. Blacksmith Institute’s world worst pollution problems report 2010. Top six toxic threats. New York (USA): Blacksmith Institute; [accessed 2019 Sept 5]. http://www.worstpolluted.org/files/FileUpload/files/2010/WWPP-2010-Report-Web.pdf.
  • Miñano HS, González-Benito ME, Martín C. 2009. Molecular characterization and analysis of somaclonal variation in chrysanthemum cultivars using RAPD markers. Sci Hortic. 122(2):238–243. doi:10.1016/j.scienta.2009.05.001.
  • Minkina TM, Motuzova GV, Mandzhieva SS, Nazarenko OG. 2012. Ecological resistance of the soil–plant system to contamination by heavy metals. J Geochem Explor. 123:33–40. doi:10.1016/j.gexplo.2012.08.021.
  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 65(6):1027–1039. doi:10.1016/j.chemosphere.2006.03.033.
  • Monni S, Uhlig C, Hansen E, Magel E. 2001. Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut. 112(2):121–129. doi:10.1016/S0269-7491(00)00125-1.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Nagajyoti PC, Lee KD, Sreekanth T. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8(3):199–216. doi:10.1007/s10311-010-0297-8.
  • Nakbanpote W, Meesungnoen O, Prasad M, 2016. Potential of ornamental plants for phytoremediation of heavy metals and income generation. In: Prasad MNV, editor. Bioremediation and bioeconomy. UK: Elsevier. p. 179–217.
  • Nas FS, Ali M. 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Eco Environ Sci. 3(4):265–268. doi:10.15406/mojes.2018.03.000.98.
  • Organum N, Bacon F. 2006. Bioremediation technologies. In: Alvarez PJJ, Illman WA, editors. Bioremediation and natural attenuation. New Jersey (USA): John Wiley & Sons. p. 351–455.
  • Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F. 2014. Erica andevalensis and Erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma. 230–231:194–203. doi:10.1016/j.geoderma.2014.04.004.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Pohlert T. 2014. The pairwise multiple comparison of mean ranks package (PMCMR). R package; [accessed 2019 Sep 5]. https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf.
  • Prapagdee B, Wankumpha J. 2017. Phytoremediation of cadmium polluted soil by Chlorophytum laxum combined with chitosan immobilized cadmium-resistant bacteria. Environ Sci Pollut Res. 24(23):19249–19258. doi:10.1007/s11356-017-9591-3.
  • Prasad MNV, Prasad R. 2012. Nature’s cure for cleanup of contaminated environment – a review of bioremediation strategies. Rev Environ Health. 28:181–189.
  • R Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0; [accessed 2019 Sep 5]. https://www.r-project.org/.
  • Ramírez Sánchez A. 2017. Evaluación del Potencial Fitorremediativo para el Control de la Exposición al Plomo y Otros Metales y Restauración Ambiental en Haina, República Dominicana [dissertation]. Murcia (Spain): University of Murcia; [accessed 2019 Sep 5]. https://www.tdx.cat/handle/10803/405948#page=1.
  • Raskin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol. 29(5):1232–1238. doi:10.1021/es00005a014.
  • Reeves RD. 1992. The Hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD, editors. The vegetation of ultramafic (serpentine) soils. Andover (UK): Intercept. p. 253–277.
  • Rout GR, Das P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie. 23(1):3–11. doi:10.1051/agro:2002073.
  • Salas Salmerón FK. 2007. Selección in vitro de plantas tolerantes a plomo para su uso en fitorremediación [Bachelor’s Degree in Biotechnology Specialist]. Mexico D.F (Mexico): Universidad Autónoma Metropolitana; [accessed 2019 Sep 5]. http://tesiuami.izt.uam.mx/uam/aspuam/presentatesis.php?recno=14183&docs=UAMI14183.PDF.
  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol. 13(5):468–474. doi:10.1038/nbt0595-468.
  • Sanita di Toppi LS, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ Exp Bot. 41:105–130. doi:10.1016/S0098-8472(98)00058-6.
  • Seregin IV, Ivanov VB. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 48(4):523–544. doi:10.1023/A:1016719901147.
  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH. 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Safe. 109:38–47. doi:10.1016/j.ecoenv.2014.07.033.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Song J, Zhang H, Duan C, Duan CW, Cui XY. 2018. Exogenous application of succinic acid enhances tolerance of Larix olgensis seedling to lead stress. J Res. 29(6):1497–1505. doi:10.1007/s11676-017-0579-0.
  • Sridhara Chary N, Kamala CT, Samuel S. 2008. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Safe. 69(3):513–524. doi:10.1016/j.ecoenv.2007.04.013.
  • Trigueros D, Mingorance MD, Rossini Oliva S. 2012. Evaluation of the ability of Nerium oleander L. to remediate Pb-contaminated soils. J Geochem Explor. 114:126–133. doi:10.1016/j.gexplo.2012.01.005.
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int. 16(7):765–794. doi:10.1007/s11356-009-0213-6.
  • Vyslouzilova M, Tlustos O, Szakova J, Pablicova D. 2003. As, Cd, Pb and Zn uptake by different Salix spp. grown at soils enriched by high loads of these elements. Plant Soil Environ. 49(5):191–196. doi:10.17221/4112-pse.
  • Wang J, Fu G, Li W, Shi Y, Pang J, Wang Q, Lü W, Liu C, Liu J. 2018. The effects of two free-floating plants (Eichhornia crassipes and Pistia stratiotes) on the burrow morphology and water quality characteristics of pond loach (Misgurnus anguillicaudatus) habitat. Aquac Fish. 3(1):22–29. doi:10.1016/j.aaf.2017.12.001.
  • Wei S, Zhou Q, Mathews S. 2008. A newly found cadmium accumulator – Taraxacum mongolicum. J Hazard Mater. 159(2–3):544–547. doi:10.1016/j.jhazmat.2008.02.052.
  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil. 249(1):83–96. doi:10.1023/A:1022516929239.
  • Wickham H. 2009. ggplot2: elegant Graphics for Data Analysis. New York (NY): Springer-Verlag.
  • Wiszniewska A, Hanus-Fajerska E, Smoleń S, Muszyńska E. 2015. In vitro selection for lead tolerance in shoot culture of Daphne species. Acta Sci Pol Hortorum Cultus. 14(1):129–142.
  • Wong MH. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 50(6):775–780. doi:10.1016/S0045-6535(02)00232-1.
  • Yang YY, Jung JY, Song WY, Suh HS, Lee Y. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124(3):1019–1026. doi:10.1104/pp.124.3.1019.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhao K, Liu X, Xu J, Selim HM. 2010. Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater. 181(1–3):778–787. doi:10.1016/j.jhazmat.2010.05.081.
  • Zhou J, Zhang Z, Zhang Y, Wei Y, Jiang Z. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLOS One. 13(3):e0191139. doi:10.1371/journal.pone.0191139.
  • Zhuang P, McBride MB, Xia H, Li N, Li Z. 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ. 407(5):1551–1561. doi:10.1016/j.scitotenv.2008.10.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.