323
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Hexachlorocyclohexane phytoremediation using Eucalyptus dunnii of a contaminated site in Argentina

, , &

References

  • Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv. 27(4):474–488. doi:10.1016/j.biotechadv.2009.04.002.
  • Abhilash PC, Singh N. 2010. Withania somnifera Dunal-mediated dissipation of lindane from simulated soil: implications for rhizoremediation of contaminated soil. J Soils Sediments. 10(2):272–282. doi:10.1007/s11368-009-0085-x.
  • Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh S. 2011. Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot. 74:127–130. doi:10.1016/j.envexpbot.2011.05.009.
  • Adachi A, Okano T. 2006. Pesticide residue reduction in selected vegetables using rice-bran. J Health Sci. 52(3):320–323. doi:10.1248/jhs.52.320.
  • AOAC. 1996. AOAC Official Method 970.52. Organochlorine and organophosphorus pesticide residues.
  • Barcellos D. 2013. Phytoremediation of soil and groundwater contaminated by chlorobenzene and benzene using Eucalyptus urograndis and Pinus taeda (Master of Science Thesis). Athens (GA): University of Georgia.
  • Barriada-Pereira M, Gonzalez-Castro MJ, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodriguez D, Fernandez-Fernandez E. 2005. Organochlorine pesticide accumulation and degradation products in vegetation samples of a contaminated area in Galacia (N.W. Spain). Chemosphere. 58(11):1571–1578.
  • Becerra-Castro C, Prieto-Fernández Á, Kidd PS, Weyens N, Rodríguez-Garrido B, Touceda-González M, Acea MJ, Vangronsveld J. 2013. Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil. 362(1–2):247–260. doi:10.1007/s11104-012-1276-6.
  • Bianconi D, Lippi D, Pietrini F, Zacchini M, Polcaro C, Donati E, Paris P, Spina S, Massacci A. 2010. Field-scale rhyzoremediation of a contaminated soil with hexachlorocyclohexane (HCH) isomers: the potential of poplars for environmental restoration and economical sustainability, Chapter 31. In: Golubev IA, editor. Handbook of phytoremediation. New York (NY): Nova Science Publishers, Inc. p. 1–12.
  • Bilal H, Ali SS, Kim KM. 2014. Potential of Eucalyptus in the remediation of environmental problems: a review. J Innov Sci Res. 4:136–144.
  • Butte W, Walker G. 1992. The determination of wood preserving agents on the surface of wood by gas chromatography and gas chromatography-mass spectrometry. Fresenius J Anal Chem. 343(1):144–144. doi:10.1007/BF00332080.
  • Cozzo D. 1995. Aspectos controvertidos de las forestaciones industriales. Chapter 4. In: Silvicultura de Plantaciones Maderables. Buenos Aires (Argentina): Orientación Gráfica Editora. p. 42.
  • Dick J. 2014. Phytoremediation of lindane in transgenic Arabidopsis thaliana expressing a bacterial HCH-dehydrochlorinase (LinA) Protein [Thesis]. Sheffield: University of Sheffield.
  • Dobbs AJ, Williams N. 1983. Indoor air pollution from pesticides used in wood remedial treatment. Environ Pollut (Serie B). 6(4):271–296. doi:10.1016/0143-148X(83)90014-9.
  • Doelman P, Haanstra L, Loonen H, Vos A. 1990. Decomposition of α- and β-hexachlorocyclohexane in soil under field conditions in a temperate climate. Soil Biol Biochem. 22(5):629–634. doi:10.1016/0038-0717(90)90008-N.
  • Gomes MP, Marques T, Carneiro M, Soares ÂM. 2012. Anatomical characteristics and nutrient uptake and distribution associated with the Cd-phytoremediation capacity of Eucalyptus camaldulenses Dehnh. J Soil Sci Plant Nutr. 12:481–495. doi:10.4067/S0718-95162012005000010.
  • Graber ER, Sorek A, Tsechansky L, Atzmon N. 2007. Competitive uptake of trichloroethene and 1,1,1-trichloroethane by Eucalyptus camaldulensis seedlings and wood. Environ Sci Technol. 41(19):6704–6710. doi:10.1021/es070743l.
  • Haffner D, Schecter A. 2014. Persistent organic pollutants (POPs): a primer for practicing clinicians. Curr Envir Health Rpt. 1(2):123–131. doi:10.1007/s40572-014-0009-9.
  • Helga BE, Schmid CAO, Feher I, Podar D, Szatmari PM, Marincaş O, Balázs ZR, Schröder P. 2018. HCH phytoremediation potential of native plant species from a contaminated urban site in Turda, Romania. J Environ Manage. 223:286–296. doi:10.1016/j.jenvman.2018.06.018.
  • Luo J, Qi S, Peng L, Wang J. 2016. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int J Phytoremediation. 18(4):308–314. doi:10.1080/15226514.2015.1094446.
  • Luo J, Qi S, Peng L, Xie X. 2017. Enhanced phytoremediation capacity of a mixed-species plantation of Eucalyptus globulus and Chickpeas. J Geochemical Explor. 182:201–205. doi:10.1016/j.gexplo.2017.01.006.
  • Madejón P, Marañón T, Navarro-Fernández CM, Domínguez MT, Alegre JM, Robinson B, Murillo JM. 2017. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace element contaminated soils. PLOS One. 12(6):e0180240–22. doi:10.1371/journal.pone.0180240.
  • Maradei D, Repetti R, Zilli N. 1997. Eucalyptus dunnii un nuevo recurso forestal para la industria. SAGPyA Forestal. 4:7–13.
  • McCutcheon SC, Schnoor JL. 2003. Phytoremediation: transformation and control of contaminants. New Jersey (NJ): John Wiley & Sons, Inc.
  • Morillo E, Villaverde J. 2017. Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ. 586:576–597. doi:10.1016/j.scitotenv.2017.02.020.
  • Nurzhanova A, Kalugin S, Zhambakin K. 2013. Obsolete pesticides and application of colonizing plant species for remediation of contaminated soil in Kazakhstan. Environ Sci Pollut Res. 20(4):2054–2063. doi:10.1007/s11356-012-1111-x.
  • Ogbeide O, Tongo I, Ezemonye L. 2016. Assessing the distribution and human health risk of organochlorine pesticide residues in sediments from selected rivers. Chemosphere. 144:1319–1326. doi:10.1016/j.chemosphere.2015.09.108.
  • Reiderer M. 1990. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity based model. Environ Sci Technol. 24:829–837.
  • Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Marques Gomes H, Ribeiro R, Vinícius de Almeida M. 2015. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides. Biomed Res. Int. 2015:1–8. doi:10.1155/2015/549863.
  • Rubinos DA, Villasuso R, Muniategui S, Barral MT, Díaz-Fierros F. 2007. Using the landfarming technique to remediate soils contaminated with hexachlorocyclohexane isomers. Water Air Soil Pollut. 181(1–4):385–390. doi:10.1007/s11270-006-9309-5.
  • Salahi A, Gruber F. 2017. Heavy metals and phytoremediation via Eucalyptus plantation. Saarbrücken: LAP Lambert Academic Publishing.
  • Salam JA, Hatha MAA, Das N. 2017. Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manage. 193:394–399. doi:10.1016/j.jenvman.2017.02.006.
  • Salam JA, Lakshmi V, Das D, Das N. 2013. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol. 29:475–487. doi:10.1007/s11274-012-1201-4.
  • Singh T, Singh DK. 2017. Phytoremediation of organochlorine pesticides: concept, method, and recent developments. Int J Phytoremediation. 19(9):834–843. doi:10.1080/15226514.2017.1290579.
  • Suthersan SS. 2001. Phytoremedation. In: Suthersan SS, editor. Natural and enhanced remediation systems. Boca Raton (FL): CRC Press. p. 239–268.
  • Trapp S, Matthies M. 1997. Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol. 29:2233–2338. doi:10.1021/es00009a027.
  • US-EPA. 1980. Manual of analytical methods for the analysis of pesticides in human and environmental samples. EPA-600/8-80-038.
  • US-EPA. 1991. Description and sampling of contaminated soils: A field pocket guide. EPA/625/12-91/002.
  • Vijgen J, Yi LF, Forter M, Weber R, Lal R. 2006. The legacy of lindane and technical HCH production. Organohalogen Compd. 68:899–904.
  • Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, Černík M, Dionysiou DD. 2019. Chemical oxidation and reduction of hexachlorocyclohexanes: a review. Water Res. 162:302–319. doi:10.1016/j.watres.2019.06.072.
  • Weber R, Aliyeva G, Vijgen J. 2013. The need for an integrated approach to the global challenge of POPs management. Environ Sci Pollut Res. 20(4):1901–1906. doi:10.1007/s11356-012-1247-8.
  • Zhang Y, Qi S, Xing X, Yang D, Devi NL, Qu C, Liu HX, Zhang JQ, Zeng FM. 2018. Legacies of organochlorine pesticides (OCPs) in soil of China—a review, and cases in Southwest and Southeast China. In: De Vivo B, Belkin HE, Lima A, editors. Environmental geochemistry. site characterization, data analysis and case histories. 2nd ed. Amsterdam: Elsevier B.V. p. 543–565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.