547
Views
24
CrossRef citations to date
0
Altmetric
Articles

Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L.

, , , , ORCID Icon, , , , , , , , & show all

References

  • Abe JI, Bergmann FW, Obata K, Hizukuri S. 1988. Production of the raw-starch digesting amylase of Aspergillus sp. K-27. Appl Microbiol Biotechnol. 27(5–6):447–450. doi:10.1007/BF00451611.
  • Agency for Toxic Substances & Disease Registry. 2016. United States Department of Health and Human Services, priority list of hazardous substances. Atlanta (GA): ATSDR [accessed 2020 Mar 3]. http://www.atsdr.cdc.gov/SPL/
  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M. 2016. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul. 35(2):303–315. doi:10.1007/s00344-015-9534-5.
  • Al Mahmud J, Hasanuzzaman M, Nahar K, Bhuyan MB, Fujita M. 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol. Environ. Saf. 147:990–1001. doi:10.1016/j.ecoenv.2017.09.045.
  • Alcántara MN, Figueroa MF, Rivera CF, Gutiérrez SG, Volke ST. 2018. An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd: a proteomic approach. Sci Total Environ. 625:762–774.
  • Ali B, Amna Javed MT, Ali H, Munis MFH, Chaudhary HJ. 2017. Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum. Int J Phytoremediat. 19(1):14–22. doi:10.1080/15226514.2016.1216075.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Ali J, Mahmood T, Hayat K, Afridi MS, Ali F, Chaudhary HJ. 2018. Phytoextraction of Cr by maize (Zea mays L.): the role of plant growth promoting endophyte and citric acid under polluted soil. Arch Environ Prot. 44(2):73–82.
  • Amna , Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ. 2015. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess. 187(6):311. doi:10.1007/s10661-015-4557-8.
  • Anjum SA, Tanveer M, Hussain S, Ullah E, Wang L, Khan I, Samad RA, Tung SA, Anam M, Shahzad B. 2016. Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. Clean Soil Air Water. 44(1):29–36. doi:10.1002/clen.201400905.
  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J. 2017. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth Sci Rev. 171:621–645. doi:10.1016/j.earscirev.2017.06.005.
  • Anwar S, Ashraf MY, Hussain M, Ashraf M, Jamil A. 2012. Citric acid mediated phytoextraction of cadmium by maize (Zea mays L.). Pak J Bot. 44(6):1831–1836.
  • Anwar S, Khan MS, Ashraf Y, Noman A, Zafar S, Liu L, Ullah S, Fahad S. 2017. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int J Phytoremediat. 19(6):505–513. doi:10.1080/15226514.2016.1254153.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 174:714–727. doi:10.1016/j.ecoenv.2019.02.068.
  • Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem. 19(4):451–457. doi:10.1016/0038-0717(87)90037-X.
  • Bates LS, Waldren RP, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181(2):413–423. doi:10.1111/j.1469-8137.2008.02657.x.
  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genet Mol Biol. 40(1):373–386. doi:10.1590/1678-4685-GMB-2016-0087.
  • Cappuccino JG, Sherman N. 1992. Microbiology: a laboratory manual. New York (NY): Pearson/Benjamin Cummings.
  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P. 2011. Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water Air Soil Pollut. 214(1–4):383–392. doi:10.1007/s11270-010-0430-0.
  • Chen Z, Zheng Y, Ding C, Ren X, Yuan J, Sun F, Li Y. 2017. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops. Ecotoxicol Environ Saf. 145:111–118. doi:10.1016/j.ecoenv.2017.07.019.
  • Estefan G, Sommer R, Ryan J. 2013. Methods of soil, plant, and water analysis: a manual for the West, Asia and North Africa region. Beirut (Lebanon): International Center for Agricultural Research in the Dry Areas (ICARDA).
  • Farago M, Mullen W. 1979. Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorganica Chim. 32:93–94.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 28(3):367–374. doi:10.1016/j.biotechadv.2010.02.001.
  • Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012:963401. doi:10.6064/2012/963401.
  • Glick BR. 2018. Soil microbes and sustainable agriculture. Pedosphere. 28(2):167–169. doi:10.1016/S1002-0160(18)60020-7.
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. 2007. Promotion of plant growth by bacterial ACC deaminase. CRC Crit Rev Plant Sci. 26(5–6):227–242. doi:10.1080/07352680701572966.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1):192–195. doi:10.1104/pp.26.1.192.
  • Gul I, Manzoor M, Silvestre J, Rizwan M, Hina K, Kallerhoff J, Arshad M. 2019. EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Int J Phytoremediation. 21(2):101–110. doi:10.1080/15226514.2018.1474441.
  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK. 1994. A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol. 40(3):255–260. doi:10.2323/jgam.40.255.
  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res Int. 22(2):1534–1544. doi:10.1007/s11356-014-3431-5.
  • Hassan W, Bano R, Khatak BU, Hussain I, Yousaf M, David J. 2015. Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes: effect on total microbial and enzymatic activity. Clean Soil Air Water. 43(3):391–398. doi:10.1002/clen.201300727.
  • Hassan W, Chen W, Cai P, Huang Q. 2013. Oxidative enzymes, the ultimate regulator: implications for factors affecting their efficiency. J Environ Qual. 42(6):1779–1790. doi:10.2134/jeq2013.05.0204.
  • Hassan W, Chen W, Cai P, Huang Q. 2014. Estimation of enzymatic, microbial, and chemical properties in brown soil by microcalorimetry. J Therm Anal Calorim. 116(2):969–988. doi:10.1007/s10973-013-3588-z.
  • Heyno E, Klose C, Krieger-Liszkay A. 2008. Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol. 179(3):687–699. doi:10.1111/j.1469-8137.2008.02512.x.
  • Hussain A, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, Ali M, Manghwar H, Jan F, Chaudhary HJ. 2019. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ Exp Bot. 159:23–33. doi:10.1016/j.envexpbot.2018.12.006.
  • Jiang B, Adebayo A, Jia J, Xing Y, Deng S, Guo L, Liang Y, Zhang D. 2019. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J Hazard Mater. 362:187–195. doi:10.1016/j.jhazmat.2018.08.060.
  • Jiang M, Liu S, Li Y, Li X, Luo Z, Song H, Chen Q. 2019. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol Environ Saf. 170:502–512. doi:10.1016/j.ecoenv.2018.12.020.
  • Jiang XJ, Luo YM, Zhao QG, Baker AJM, Christie P, Wong MH. 2003. Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere. 50(6):813–818. doi:10.1016/S0045-6535(02)00224-2.
  • Joseph B, Ranjan PR, Lawrence R. 2012. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod. 1(2):141–152.
  • Juwarkar AA, Nair A, Dubey KV, Singh S, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. 68(10):1996–2002. doi:10.1016/j.chemosphere.2007.02.027.
  • Kamran MA, Bibi S, Xu RK, Hussain S, Mehmood K, Chaudhary HJ. 2017. Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. J Geochem Explor. 182:269–274. doi:10.1016/j.gexplo.2016.09.005.
  • Kamran MA, Xu RK, Li JY, Jiang J, Nkoh JN. 2018. Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotoxicol Environ Saf. 165:11–18. doi:10.1016/j.ecoenv.2018.08.092.
  • Kazempour MN. 2004. Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathology J. 3(2):88–96. doi:10.3923/ppj.2004.88.96.
  • Khan N, Bano A. 2016. Role of plant growth promoting rhizobacteria and ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation. 18(3):211–221. doi:10.1080/15226514.2015.1064352.
  • Klaus A, Lysenko E, Kholodova V. 2013. Maize plant growth and accumulation of photosynthetic pigments at short-and long-term exposure to cadmium. Russ J Plant Physiol. 60(2):250–259. doi:10.1134/S1021443713020118.
  • Li C, Yu F, Li Y, Niu W, Li J, Yang J, Liu K. 2020. Comparative analysis of the seed germination of pakchoi and its phytoremediation efficacy combined with chemical amendment in four polluted soils. Int J Phytoremediat. doi:10.1080/15226514.2020.1741508.
  • Li H, Li X, Xiang L, Zhao HM, Li YW, Cai QY, Zhu L, Mo CH, Hung WM. 2018. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ. 613–614:447–455. doi:10.1016/j.scitotenv.2017.09.066.
  • Liu C, Chang C, Fei Y, Li F, Wang Q, Zhai G, Lei J. 2018. Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Environ Pollut. 233:880–888. doi:10.1016/j.envpol.2017.08.092.
  • Loper JE. 1986. Influence of Bacterial Sources of Indole-3-acetic Acid on Root Elongation of Sugar Beet. Phytopathology. 76(4):386. doi:10.1094/Phyto-76-386.
  • Luo S-l, Chen L, Chen J-l, Xiao X, Xu T-y, Wan Y, Rao C, Liu C-b, Liu Y-t, Lai C, et al. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 85(7):1130–1138. doi:10.1016/j.chemosphere.2011.07.053.
  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage. 156:62–69. doi:10.1016/j.jenvman.2015.03.024.
  • Mahmood-Ul-Hassan M, Yousra M, Saman L, Ahmad R. 2020. Floriculture: alternate non- edible plants for phyto-remediation of heavy metal contaminated soils. Int J Phytoremediat. 23:1–8. doi:10.1080/15226514.2019.1707772.
  • Marulanda A, Barea JM, Azcón R. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul. 28(2):115–124. doi:10.1007/s00344-009-9079-6.
  • Mojiri A. 2011. The potential of corn (Zea mays L.) for phytoremediation of soil contaminated with cadmium and lead. J Biol Environ Sci. 5(13):17–22.
  • Moreira H, Marques AP, Franco AR, Rangel AO, Castro PM. 2014. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res Int. 21(16):9742–9753. doi:10.1007/s11356-014-2848-1.
  • Mostofa MG, Rahman A, Ansary MMU, Watanabe A, Fujita M, Tran L-S. 2015. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep. 5:14078. doi:10.1038/srep14078.
  • Mufti R, Amna Rafique M, Haq F, Munis MFH, Masood S, Mumtaz AS, Hassan Javed C. 2015. Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata. Soil Environ. 34(1):89–99.
  • Namasivayam E, Ravindar JD, Mariappan K, Akhil J, Mukesh K, Jayaraj R. 2011. Production of extracellular pectinase by Bacillus cereus isolated from market solid waste. J Bioanal Biomed. 3(3):70–75.
  • Nelson D, Sommers LE. 1982. Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR, ediors. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison (WI): American Society of Agronomy. p. 539–579.
  • Neugschwandtner RW, Tlustoš P, Komárek M, Száková J. 2008. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma. 144(3–4):446–454. doi:10.1016/j.geoderma.2007.11.021.
  • Pan F, Luo S, Shen J, Wang Q, Ye J, Meng Q, Wu Y, Chen B, Cao X, Yang X, et al. 2017. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure. Environ Sci Pollut Res Int. 24(10):9350–9360. doi:10.1007/s11356-017-8565-9.
  • Prapagdee B, Chanprasert M, Mongkolsuk S. 2013. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere. 92(6):659–666. doi:10.1016/j.chemosphere.2013.01.082.
  • Putwattana N, Kruatrachue M, Kumsopa A, Pokethitiyook P. 2015. Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int J Phytoremediation. 17(1–6):165–174. doi:10.1080/15226514.2013.876962.
  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS. 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int. 23(18):17859–17879. doi:10.1007/s11356-016-6436-4.
  • Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F. 2017. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health. 39(2):259–277. doi:10.1007/s10653-016-9826-0.
  • Rizzardo C, Tomasi N, Monte R, Varanini Z, Nocito FF, Cesco S, Pinton R. 2012. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta. 236(6):1701–1712. doi:10.1007/s00425-012-1729-4.
  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S. 2013. Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot. 87:100–109. doi:10.1016/j.envexpbot.2012.09.012.
  • Saleem MH, Fahad S, Khan SU, Ahmar S, Khan MHU, Rehman M, Maqbool Z, Liu L. 2020. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol Environ Saf. 189:109915. doi:10.1016/j.ecoenv.2019.109915.
  • Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, Hossain A, Llanes A, Liu L. 2020. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut R. 27(5):1534–1544.
  • Schwyn B, Neilands J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160(1):47–56. doi:10.1016/0003-2697(87)90612-9.
  • Shah K, Dubey R. 1997. Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plantarum. 40(1):121–130. doi:10.1023/A:1000956803911.
  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM. 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: Pim DV. Reviews of environmental contamination and toxicology. Vol 241. Cham: Springer. p. 73–137.
  • Shamshad S, Shahid M, Dumat C, Rafiq M, Khalid S, Sabir M, Missen MMS, Shah N, Farooq ABU, Murtaza B, et al. 2019. A multivariate analysis of health risk assessment, phytoremediation potential, and biochemical attributes of Spinacia oleracea exposed to cadmium in the presence of organic amendments under hydroponic conditions. Int J Phytoremediat. 21(5):461–470. doi:10.1080/15226514.2018.1540539.
  • Singh RP, Shelke GM, Kumar A, Jha PN. 2015. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Frontiers Microbiol. 6:937.
  • Sumanta N, Haque CI, Nishika J, Suprakash R. 2014. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci. 2231:606.
  • Suthar V, Memon KS, Mahmood-Ul-Hassan M. 2014. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environ Monit Assess. 186(6):3957–3968. doi:10.1007/s10661-014-3671-3.
  • Talboys PJ, Owen DW, Healey JR, Withers PJ, Jones DL. 2014. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. BMC Plant Biol. 14(1):51. doi:10.1186/1471-2229-14-51.
  • Tang X, Pang Y, Ji P, Gao P, Nguyen TH, Tong Y. 2016. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf. 125:102–106. doi:10.1016/j.ecoenv.2015.11.033.
  • Tanwir K, Akram MS, Masood S, Chaudhary HJ, Lindberg S, Javed MT. 2015. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environ Sci Pollut Res Int. 22(12):9193–9203. doi:10.1007/s11356-015-4076-8.
  • Teale WW, Paponov I, Palme K. 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 7(11):847–859. doi:10.1038/nrm2020.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 117:28–40. doi:10.1016/j.envexpbot.2015.05.001.
  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y. 2012. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere. 89(6):743–750. doi:10.1016/j.chemosphere.2012.07.005.
  • Wang FY, Lin XG, Yin R. 2007. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation. 9(4):345–353. doi:10.1080/15226510701476214.
  • Wang H, Zhao S, Liu R, Zhou W, Jin J. 2009. Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica. 47(2):277–283. doi:10.1007/s11099-009-0043-2.
  • Wang J, Chen X, Chi Y, Chu S, Hayat K, Zhi Y, Hayat S, Terziev D, Zhang D, Zhou P. 2020. Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotoxicol Environ Saf. 189:109997. doi:10.1016/j.ecoenv.2019.109997.
  • Xu W, Lu G, Wang R, Guo C, Liao C, Yi X, Dang Z. 2015. The effect of pollination on cd phytoextraction from soil by maize (Zea mays L.). Int J Phytoremediation. 17(10):945–950. doi:10.1080/15226514.2014.1003789.
  • Zaefarian F, Vahidzadeh S, Rahdari P, Rezvani M, Zadeh HG. 2012. Effectiveness of plant growth promoting rhizobacteria in facilitating lead and nutrient uptake by little seed canary grass. Braz J Bot. 35(3):241–248. doi:10.1590/S1806-99592012000300003.
  • Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, Jing YX. 2020. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int J Phytoremediat. doi:10.1080/15226514.2020.1725867

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.