353
Views
23
CrossRef citations to date
0
Altmetric
Articles

Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L.

, , ORCID Icon, & ORCID Icon

References

  • Ahmed E, Holmström SJ. 2014. Siderophores in environmental research: roles and applications. Microb Biotechnol. 7(3):196–208. doi:10.1111/1751-7915.12117.
  • Amna, Masood S, Syed JH, Munis MFH, Chaudhary HJ. 2015. Phyto-extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. Int J Phytoremediat. 17(10):981–987.
  • Armendariz AL, Talano MA, Nicotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E. 2019. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem. 138:26–35. doi:10.1016/j.plaphy.2019.02.018.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Berwal M, Ram C. 2018. Superoxide dismutase: a stable biochemical marker for abiotic stress tolerance in higher plants. In: Alexandre Bosco de Oliveira, editors. Superoxide dismutase. UK: IntechOpen.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 57(2):535–538. doi:10.1128/AEM.57.2.535-538.1991.
  • Chandra R, Kang H. 2016. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Technol. 12(2):55–61. doi:10.1080/21580103.2015.1044024.
  • Chen C, Cholewa EM, McIver JD, Schultz BC, Yang Y. 2019. Use of lipo chitooligosaccharides to initiate early flowering and fruit development in plants and related methods and compositions. U.S. patent application No. 10/258,037.
  • Dubey S, Gupta A, Khare A, Jain G, Bose S, Rani V. 2018. Long-and short-term protective responses of rice seedling to combat Cr (VI) toxicity. Environ Sci Pollut Res Int. 25(36):36163–36172. doi:10.1007/s11356-018-3422-z.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Scient World J. 2015:1–18. doi:10.1155/2015/756120.
  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. 2012. Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol. 78:51–65.
  • Gupta M, Gupta S. 2016. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci. 7:2074. doi:10.3389/fpls.2016.02074.
  • Hadi F, Bano A, Fuller MP. 2010. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere. 80(4):457–462. doi:10.1016/j.chemosphere.2010.04.020.
  • Handa N, Kohli SK, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. 2018. Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech. 8(1):66. doi:10.1007/s13205-018-1087-4.
  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 8(9):384. doi:10.3390/antiox8090384.
  • Hiscox JD, Israelstam GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 57(12):1332–1334. doi:10.1139/b79-163.
  • Honma M, Shimomura T. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 42(10):1825–1831. doi:10.1080/00021369.1978.10863261.
  • Hossain MA, Piyatida P, da Silva JAT, Fujita M. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012:1–37. doi:10.1155/2012/872875.
  • Huang C, Qin N, Sun L, Yu M, Hu W, Qi Z. 2018. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. IJMS. 19(7):1913. doi:10.3390/ijms19071913.
  • Jung H-I, Kong M-S, Lee B-R, Kim T-H, Chae M-J, Lee E-J, Jung G-B, Lee C-H, Sung J-K, Kim Y-H. 2019. Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings. Front Plant Sci. 10:1089. doi:10.3389/fpls.2019.01089.
  • Khan FA, Mahmood T, Ali M, Saeed A, Maalik A. 2014. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Nat Prod Res. 28(16):1267–1274. doi:10.1080/14786419.2014.895723.
  • Khan N, Bano A. 2018. Role of PGPR in the phytoremediation of heavy metals and crop growth under municipal wastewater irrigation. In: Ansari A, Gill S, Gill R, Lanza GR, Newman L, editors. Phytoremediation. Cham: Springer. p. 135–149.
  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R. 2019. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep. 9(1):5855. doi:10.1038/s41598-019-41899-3.
  • Kumar P, Tokas J, Singal HR. 2019. Amelioration of chromium VI toxicity in Sorghum (Sorghum bicolor L.) using glycine betaine. Sci Rep. 9(1):1–15. doi:10.1038/s41598-019-52479-w.
  • Kumar V, Suryakant SP, Kumar S, Kumar N. 2016. Effect of chromium toxicity on plants: a review. Agriways. 4(1):107–120.
  • Leonova NO, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine 2015. Auxins and cytokinines synthesis by Bradyrhizobium japonicum under flavonoids influence. Mikrobiol Z. 77(5):95–103. doi:10.15407/microbiolj77.05.095
  • Maheshwari DK, Dheeman S, Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In: Ansari A, Gill S, Gill R, Lanza GR, Newman L, editors. Bacterial metabolites in sustainable agroecosystem. Cham: Springer. p. 159–182.
  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z. 2016. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci. 7:876. doi:10.3389/fpls.2016.00876.
  • Masciarelli O, Llanes A, Luna V. 2014. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res. 169(7–8):609–615. doi:10.1016/j.micres.2013.10.001.
  • Mattina MI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124(3):375–378. doi:10.1016/S0269-7491(03)00060-5.
  • Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID, Redondo-Gómez S, Pajuelo E, Ribas-Carbó M, Mateos-Naranjo E. 2018. PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci. 9:1500. doi:10.3389/fpls.2018.01500.
  • Mishra J, Singh R, Arora NK. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol. 8:1706. doi:10.3389/fmicb.2017.01706.
  • Mishra NP, Mishra RK, Singhal GS. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102(3):903–910. doi:10.1104/pp.102.3.903.
  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML. 2007. Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals. 20(6):841–851. doi:10.1007/s10534-006-9077-0.
  • Oliveira H. 2012. Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany. 2012:1–8. 2012. doi:10.1155/2012/375843.
  • Pal AK, Chakraborty A, Sengupta C. 2018. Differential effects of plant growth promoting rhizobacteria on chilli (Capsicum annuum L.) seedling under cadmium and lead stress. Plant Sci Today. 5(4):182–190. doi:10.14719/pst.2018.5.4.419.
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A. 2002. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem. 40(6-8):521–530.
  • Patterson BD, MacRae EA, Ferguson IB. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem. 139(2):487–492. doi:10.1016/0003-2697(84)90039-3.
  • Pilon-Smits EA. 2019. On the ecology of selenium accumulation in plants. Plants. 8(7):197. doi:10.3390/plants8070197.
  • Rai V, Tandon PK, Khatoon S. 2014. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. Biomed Res Int. 2014:934182. 2014. doi:10.1155/2014/934182.
  • Rajendran M, An WH, Li WC, Perumal V, Wu C, Sahi SV, Sarkar SK. 2019. Chromium detoxification mechanism induced growth and antioxidant responses in vetiver (Chrysopogon zizanioides (L.) Roberty). J Cent South Univ. 26(2):489–500. doi:10.1007/s11771-019-4021-y.
  • Rajkumar M, Freitas H. 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere. 71(5):834–842. doi:10.1016/j.chemosphere.2007.11.038.
  • Saif S, Khan MS. 2018. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environ Monit Assess. 190(5):290. doi:10.1007/s10661-018-6652-0.
  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI. 2018. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut. 234:915–934.
  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 178:513–533. doi:10.1016/j.chemosphere.2017.03.074.
  • Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. 2019. Transcriptomic analysis reveals the roles of detoxification systems in response to mercury in Chromera velia. Biomolecules. 9(11):647. doi:10.3390/biom9110647.
  • Sharma AD, Brar MS, Malhi SS. 2005. Critical toxic ranges of chromium in spinach plants and in soil. J Plant Nutr. 28(9):1555–1568. doi:10.1080/01904160500203382.
  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 24(13):2452. doi:10.3390/molecules24132452.
  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. 2013. Chromium toxicity and tolerance in plants. Environ Chem Lett. 11(3):229–254. doi:10.1007/s10311-013-0407-5.
  • Smirnoff N, Arnaud D. 2019. Hydrogen peroxide metabolism and functions in plants. New Phytol. 221(3):1197–1214. doi:10.1111/nph.15488.
  • Stambulska UY, Bayliak MM, Lushchak VI. 2018. Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. Biomed Res Int. 2018:8031213. doi:10.1155/2018/8031213.
  • Suman J, Uhlik O, Viktorova J, Macek T. 2018. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci. 9:1476. doi:10.3389/fpls.2018.01476.
  • Tak HI, Ahmad F, Babalola OO. 2013. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology. Vol. 223. New York (NY): Springer. p. 33–52.
  • Thompson GA. 1985. Mechanisms of membrane response to environmental stress. Frontiers of Membrane Research in Agriculture, 347.
  • Tiwari S, Lata C. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci. 9:452. doi:10.3389/fpls.2018.00452.
  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN. 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere. 41(7):1075–1082. doi:10.1016/S0045-6535(99)00426-9.
  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 21(5):573. doi:10.3390/molecules21050573.
  • Vimal SR, Singh JS, Arora NK, Singh S. 2017. Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere. 27(2):177–192. doi:10.1016/S1002-0160(17)60309-6.
  • Visioli G, D'Egidio S, Sanangelantoni AM. 2014. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci. 5:752. doi:10.3389/fpls.2014.00752.
  • Wakeel A, Ali I, Wu M, Raza Kkan A, Jan M, Ali A, Liu Y, Ge S, Wu J, Liu B, et al. 2019. Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environ Exp Bot. 161:166–179. doi:10.1016/j.envexpbot.2018.09.004.
  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L. 2016. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci. 7:1875. doi:10.3389/fpls.2016.01875.
  • Zieslin N, Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem (France). 31:333–339.
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64(4):555–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.