573
Views
44
CrossRef citations to date
0
Altmetric
Articles

Synergistic ameliorative effect of iron oxide nanoparticles and Bacillus subtilis S4 against arsenic toxicity in Cucurbita moschata: polyamines, antioxidants, and physiochemical studies

, , ORCID Icon & ORCID Icon

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Hussain M. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health. 15(1):59. doi:10.3390/ijerph15010059.
  • Abbaszadeh-Dahaji P, Masalehi F, Akhgar A. 2020. Improved growth and nutrition of Sorghum (Sorghum bicolor) plants in a low-fertility calcareous soil treated with plant growth-promoting rhizobacteria and Fe-EDTA. J Soil Sci Plant Nutr. 20(1):31–42. doi:10.1007/s42729-019-00098-9.
  • Adrees M, Khan ZS, Ali S, Hafeez M, Khalid S, Ur Rehman MZ, Hussain A, Hussain K, Shahid Chatha SA, Rizwan M. 2020. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere. 238:124681. doi:10.1016/j.chemosphere.2019.124681.
  • Aebi H. 1984. Catalase in vitro. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. Vol. 105. London (UK): Academic Press. p. 121–126.
  • Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H. 2011. Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res. 140(3):354–367. doi:10.1007/s12011-010-8699-9.
  • Alam MJ, Sultana F, Iqbal MT. 2015. Potential of iron nanoparticles to increase germination and growth of wheat seedling. J Nanosci Adv Technol. 1(3):14–20.
  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 9:49–67. doi:10.2147/NSA.S99986.
  • Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019:1–14. doi:10.1155/2019/6730305.
  • Alkhatib R, Alkhatib B, Abdo N, Laith AE, Creamer R. 2019. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 19(1):253. doi:10.1186/s12870-019-1864-1.
  • Allevato E, Mauro RP, Stazi SR, Marabottini R, Leonardi C, Ierna A, Giuffrida F. 2019. Arsenic accumulation in grafted Melon plants: role of rootstock in modulating root-to-shoot translocation and physiological response. Agronomy. 9(12):828. doi:10.3390/agronomy9120828.
  • Asadi Karam E, Keramat B, Asrar Z, Mozafari H. 2017. Study of interaction effect between triacontanol and nitric oxide on alleviating of oxidative stress arsenic toxicity in coriander seedlings. J Plant Interact. 12(1):14–20. doi:10.1080/17429145.2016.1267270.
  • Aslam M, Saeed MS, Sattar S, Sajad S, Sajjad M, Adnan M, Sharif MT. 2017. Specific role of proline against heavy metals toxicity in plants. Int J Pure Appl Biosci. 5(6):27–34. doi:10.18782/2320-7051.6032.
  • Azarmi-Atajan F, Sayyari-Zohan MH. 2020. Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria. J Hortic Postharvest Res. 3:67–78.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Bitew Y, Alemayehu M. 2017. Impact of crop production inputs on soil health: a review. Asian J Plant Sci. 16(3):109–131. doi:10.3923/ajps.2017.109.131.
  • Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 57(2):535–538. doi:10.1128/AEM.57.2.535-538.1991.
  • Buettner G. 2011. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti-Cancer Agents Med Chem. 11(4):341–346.
  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS. 2015. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci. 16(10):23630–23650. doi:10.3390/ijms161023630.
  • Choudhury B, Chowdhury S, Biswas AK. 2011. Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact. 6(1):15–24. doi:10.1080/17429140903487552.
  • Dinu M, Soare R, Hoza G, Becherescu AD. 2016. Biochemical composition of some local pumpkin population. Agric Agric Sci Proc 2016. 10:185–191. doi:10.1016/j.aaspro.2016.09.051.
  • Dionisio-Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135(1):1–9. doi:10.1016/S0168-9452(98)00025-9.
  • Ehrampoush MH, Miria M, Salmani MH, Mahvi AH. 2015. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng. 13(1):84. doi:10.1186/s40201-015-0237-4.
  • Elanchezhian R, Kumar D, Ramesh K, Biswas AK, Guhey A, Patra AK. 2017. Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. J Plant Nutr. 40(14):1969–1977. doi:10.1080/01904167.2016.1270320.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015:1–18. doi:10.1155/2015/756120.
  • Etesami H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf. 147:175–191. doi:10.1016/j.ecoenv.2017.08.032.
  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. 2016. Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. 4:20. doi:10.3389/fenvs.2016.00020.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi:10.1104/pp.59.2.309.
  • Greger M, Landberg T. 2019. Silicon reduces cadmium and arsenic levels in field-grown crops. Silicon. 11(5):2371–2375. doi:10.1007/s12633-015-9338-z.
  • Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHMB, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Mahmud JA, Fujita M. 2019. Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. IJMS. 20(13):3215. doi:10.3390/ijms20133215.
  • Huang L, Chen J, Gan L, Wang J, Dong S. 2019. Single-atom nanozymes. Sci Adv. 5(5):eaav5490. doi:10.1126/sciadv.aav5490.
  • Huang Y, Bie Z, Liu Z, Zhen A, Wang W. 2009. Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr. 55(5):698–704. doi:10.1111/j.1747-0765.2009.00412.x.
  • Hussain A, Ali S, Rizwan M, Ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf. 173:156–164. doi:10.1016/j.ecoenv.2019.01.118.
  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W. 2016. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 80(1):23–36. doi:10.1007/s10725-015-0142-y.
  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. 2018. Traversing the links between heavy metal stress and plant signaling. Front Plant Sci. 9:12. doi:10.3389/fpls.2018.00012.
  • Jha PN, Gomaa A-B, Yanni YG, El-Saadany A-EY, Stedtfeld TM, Stedtfeld RD, Gantner S, Chai B, Cole J, Hashsham SA. 2020. Alterations in the endophyte-enriched root-associated microbiome of rice receiving growth-promoting treatments of urea fertilizer and Rhizobium biofertilizer. Microb Ecol. 79(2):367–382. doi:10.1007/s00248-019-01406-7.
  • Joshi VK, Attri BL, Panesar PS, Abrol GS, Sharma S, Thakur AD, Selli S. 2017. Specific features of table wine production technology. New York (NY): Elsevier.
  • Kalita J, Pradhan AK, Shandilya ZM, Tanti B. 2018. Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci. 25(5):235–249. doi:10.1016/j.rsci.2018.06.007.
  • Khajuria A, Ohri P. 2017. Nematode stress mitigation by polyamine application in lycopersiconesculentum. Indian J Nematol. 47(2):147–154.
  • Khan E, Gupta M. 2018. Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep. 8(1):1–16. doi:10.1038/s41598-018-28712-3.
  • Khan N, Bano A, Ali S, Babar MA. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90(2):189–203. doi:10.1007/s10725-020-00571-x.
  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M. 2018. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int J Phytoremed. 20(6):581–592. doi:10.1080/15226514.2017.1405378.
  • Khanna K, Sharma A, Ohri P, Bhardwaj R, Abd_Allah EF, Hashem A, Ahmad P. 2019. Impact of plant growth promoting rhizobacteria in the orchestration of Lycopersicon esculentum Mill. Resistance to plant parasitic nematodes: a metabolomic approach to evaluate defense responses under field conditions. Biomolecules. 9(11):676. doi:10.3390/biom9110676.
  • Kundu R, Pal S, Majumder A. 2012. Arsenic accumulation in pumpkin through contaminated groundwater and varietal evaluation thereof in Gangetic alluvium of West Bengal, India. Appl Biol Res. 14(1):71–78.
  • Lane DJR, Bae D-H, Siafakas AR, Suryo Rahmanto Y, Al-Akra L, Jansson PJ, Casero RA, Richardson DR. 2018. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochim Biophys Acta Mol Basis Dis. 1864 (9):2793–2813. doi:10.1016/j.bbadis.2018.05.007.
  • Li J, Wan F, Guo W, Huang J, Dai Z, Yi L, Wang Y. 2020. Influence of α-and γ-Fe2O3 nanoparticles on watermelon (Citrullus moschata) physiology and fruit quality. Water Air Soil Pollut. 231(4):1–12. doi:10.1007/s11270-020-04511-3.
  • Li Z, Li Y, Zhang Y, Cheng B, Peng Y, Zhang X, Ma X, Huang L, Yan Y. 2018. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover. Plant Physiol Biochem. 129:251–263. doi:10.1016/j.plaphy.2018.06.009.
  • Li Z, Li Z, Huang Y, Jiang Y, Liu Y, Wen W, Li H, Shao J, Wang C, Zhu X. 2020. Antioxidant capacity. Acs Omega. 5(17):9724–9732. doi:10.1021/acsomega.9b04007.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. Vol. 148. London (UK): Academic Press. p. 350–382.
  • Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D. 2015. Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep. 1(4):280–291. doi:10.1007/s40726-015-0017-x.
  • Ma Y, Oliveira RS, Freitas H, Zhang C. 2016. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci. 7:918. doi:10.3389/fpls.2016.00918.
  • Mahdieh S, Ghaderian SM, Karimi N. 2013. Effect of arsenic on germination, photosynthesis and growth parameters of two winter wheat varieties in Iran. J Plant Nutr. 36(4):651–664. doi:10.1080/01904167.2012.754036.
  • Malik A, Parvaiz A, Mushtaq N, Hussain I, Javed T, Rehman HU, Farooqi A. 2020. Characterization and role of derived dissolved organic matter on arsenic mobilization in alluvial aquifers of Punjab, Pakistan. Chemosphere. 251:126374. doi:10.1016/j.chemosphere.2020.126374.
  • Mallikarjunaiah S, Pattabhiramaiah M, Metikurki B. 2020. Application of nanotechnology in the bioremediation of heavy metals and wastewater management. In: Nanotechnology for food, agriculture, and environment. Cham (Switzerland): Springer. p. 297–321.
  • Masindi V, Muedi KL. 2018. Environmental contamination by heavy metals. Heavy Metals. 19:2019.
  • Mattina MI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124(3):375–378. doi:10.1016/S0269-7491(03)00060-5.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5):867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Nemati Lafmejani Z, Jafari AA, Moradi P, Ladan Moghadam A. 2018. Impact of foliar application of iron-chelate and iron nano particles on some morpho-physiological traits and essential oil composition of Peppermint (Mentha piperita L.). J Essent Oil Bear Plants. 21(5):1374–1384. doi:10.1080/0972060X.2018.1556122.
  • Pan BG, Wang SB, Liu JB, Cao PS, Yuan XH. 2006. Effect of heat stress on photosynthesis of pepper cultivars at seedling stage. Jiangsu J Agric Sci. 22(2):137–140.
  • Pandey P, Singh J, Achary V, Reddy MK. 2015. Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci. 3:25. doi:10.3389/fenvs.2015.00025.
  • Qiao J-T, Liu T-X, Wang X-Q, Li F-B, Lv Y-H, Cui J-H, Zeng X-D, Yuan Y-Z, Liu C-P. 2018. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere. 195:260–271. doi:10.1016/j.chemosphere.2017.12.081.
  • Rahman A, Mostofa MG, Alam M, Nahar K, Hasanuzzaman M, Fujita M. 2015. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res Int. 2015:340812. doi:10.1155/2015/340812.
  • Rehman K, Fatima F, Waheed I, Akash MSH. 2018. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 119(1):157–184. doi:10.1002/jcb.26234.
  • Rout GR, Sahoo S. 2015. Role of iron in plant growth and metabolism. RAS. 3(0):1–24. doi:10.7831/ras.3.1.
  • Saleem M, Asghar HN, Zahir ZA, Shahid M. 2018. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere. 195:606–614. doi:10.1016/j.chemosphere.2017.12.117.
  • Samrana S, Ali I, Azizullah A, Daud MK, Gan Y. 2017. Arsenic-based pollution status in Pakistan. Ann Agric Crop Sci. 2(2):1027.
  • Sen S, Ghosh D, Mohapatra S. 2018. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol Biochem. 129:180–188. doi:10.1016/j.plaphy.2018.05.034.
  • Sergiev I, Alexieva V, Karanov E. 1997. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci. 51:121–124.
  • Shah AH, Shahid M, Khalid S, Shabbir Z, Bakhat HF, Murtaza B, Niazi NK. 2020. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pak Environ Geochem Health. 42(1):121–133.
  • Shaibur MR, Kitajima N, Huq SI, Kawai S. 2009. Arsenic–iron interaction: effect of additional iron on arsenic-induced chlorosis in barley grown in water culture. Soil Sci Plant Nutr. 55(6):739–746. doi:10.1111/j.1747-0765.2009.00414.x.
  • Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J. 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24(14):2558. doi:10.3390/molecules24142558.
  • Shrivastava A, Barla A, Majumdar A, Singh S, Bose S. 2020. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere. 238:124988. doi:10.1016/j.chemosphere.2019.124988.
  • Silambarasan S, Logeswari P, Valentine A, Cornejo P. 2019. Role of Curtobacterium herbarum strain CAH5 on aluminum bioaccumulation and enhancement of Lactuca sativa growth under aluminum and drought stresses. Ecotoxicol Environ Saf. 183:109573. doi:10.1016/j.ecoenv.2019.109573.
  • Song J, Nada K, Tachibana S. 2002. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol. 43(6):619–627. doi:10.1093/pcp/pcf078.
  • Souri Z, Karimi N, de Oliveira LM. 2018. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environ Technol. 39(10):1316–1327. doi:10.1080/09593330.2017.1329349.
  • Świętek M, Lu YC, Konefał R, Ferreira LP, Cruz MM, Ma YH, Horák D. 2019. Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein J Nanotechnol. 10(1):1073–1088. doi:10.3762/bjnano.10.108.
  • Tajti J, Janda T, Majláth I, Szalai G, Pál M. 2018. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Saf. 148:546–554. doi:10.1016/j.ecoenv.2017.10.068.
  • Valette M, Rey M, Gerin F, Comte G, Wisniewski‐Dyé F. 2020. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J Integr Plant Biol. 62(2):228–246. doi:10.1111/jipb.12810.
  • Vandana UK, Singha B, Gulzar ABM, Mazumder PB. 2020. Molecular mechanisms in plant growth promoting bacteria (PGPR) to resist environmental stress in plants. In: Sharma V, Salwan R, Al-Ani L, editors. Molecular aspects of plant beneficial microbes in agriculture. London (UK): Academic Press. p. 221–233.
  • Várallyay S, Bódi É, Garousi F, Veres S, Kovács B. 2015. Effect of arsenic on dry weight and relative chlorophyll content in greeningmaize and sunflower tissues. JMBFS. 4(3):167–169. doi:10.15414/jmbfs.2015.4.special3.167-169.
  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 21(5):573. doi:10.3390/molecules21050573.
  • Verbruggen N, Hermans C. 2008. Proline accumulation in plants: a review. Amino Acids. 35(4):753–759. doi:10.1007/s00726-008-0061-6.
  • Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ. 2018. Arsenate induced chlorosis 1/translocon at the outer envelope membrane of chloroplasts 132 protects chloroplasts from arsenic toxicity. Plant Physiol. 178(4):1568–1583. doi:10.1104/pp.18.01042.
  • Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmed S, Ahmad A. 2018. Effect of Bacillus fortis 162 on growth, oxidative stress tolerance and phytoremediation potential of Catharanthus roseus under chromium stress. Int J Agric Biol. 20(7):1513–1522.
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64(4):555–559. doi:10.1016/S0308-8146(98)00102-2.
  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J. 2016. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. IJMS. 17(6):976. doi:10.3390/ijms17060976.
  • Zhou W, Qin S, Lyu D, Zhang P. 2015. Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet cherry rootstocks. Arch Agron Soil Sci. 61(3):361–370. doi:10.1080/03650340.2014.935346.
  • Zia-Ur-Rehman M, Naeem A, Khalid H, Rizwan M, Ali S, Azhar M. 2018. Responses of plants to iron oxide nanoparticles. In: Tripathi DK, Ahmad P, Dubey NK, editors. Nanomaterials in plants, algae, and microorganisms. London (UK): Academic Press. p. 221–238.
  • Zieslin N, Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem. 31(3):333–339.
  • Zu YQ, Sun JJ, He YM, Wu J, Feng GQ, Li Y. 2016. Effects of arsenic on growth, photosynthesis and some antioxidant parameters of Panax notoginseng growing in shaded conditions. Int J Adv Agric Res. 4:78–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.