327
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evaluation of biphenyl- and polychlorinated-biphenyl (PCB) degrading Rhodococcus sp. MAPN-1 on growth of Morus alba by pot study

, , , &

References

  • Abramowicz DA. 1990. Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol. 10(3):241–251. doi:10.3109/07388559009038210.
  • Aken BV, Correa PA, Schnoor JL. 2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol. 44(8):2767–2776. doi:10.1021/es902514d.
  • Anyasi RO, Atagana HI. 2014. Phytotreatment of polychlorinated biphenyls contaminated soil by Chromolaena odorata (L) King and Robinson. Int J Environ Pollut Rem. 2:73–79.
  • Arslan M, Imran A, Khan QM, Afzal M. 2017. Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res Int. 24(5):4322–4336. doi:10.1007/s11356-015-4935-3.
  • Baldwin BR, Nakatsu CH, Nies L. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol. 69(6):3350–3358. doi:10.1128/aem.69.6.3350-3358.2003.
  • Barriault D, Durand J, Maaroufi H, Eltis LD, Sylvestre M. 1998. Degradation of polychlorinated biphenyl metabolites by naphthalene-catabolizing enzymes. Appl Environ Microbiol. 64(12):4637–4642.
  • Barriault D, Sylvestre M. 1999. Functionality of biphenyl 2,3-dioxygenase components in naphthalene 1,2-dioxygenase. Appl Microbiol Biotechnol. 51(5):592–597. doi:10.1007/s002530051437.
  • Bokvajová A, Burkhard J, Demnerová K, Pazlarová J. 1994. Screening and separation of microorganisms degrading PCBs. Environ Health Perspect. 102(6–7):552–554. doi:10.1289/ehp.94102552.
  • Borja J, Taleon DM, Auresenia J, Gallardo S. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochem. 40(6):1999–2013. doi:10.1016/j.procbio.2004.08.006.
  • Brunner W, Sutherland FH, Focht DD. 1985. Enhanced biodegradation of poly-chlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J Environ Qual. 14(3):324–328. doi:10.2134/jeq1985.00472425001400030004x.
  • Cairn SE, Barth FS. 2017. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. Intl J Phytorem. 19:877–883.
  • Chang Y-C, Takada K, Choi D, Toyama T, Sawada K, Kikuchi S. 2013. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway. Appl Biochem Biotechnol. 170(2):381–398. doi:10.1007/s12010-013-0191-5.
  • Chen J, Xu QX, Su Y, Shi ZQ. 2012. Phytoremediation of organic polluted soil. J Bioremed Biodeg. 04(02):132–134. doi:10.4172/2155-6199.1000e132.
  • Dercová K, Čičmanová J, Lovecká P, Demnerová K, Macková M, Hucko P, Kušnír P. 2008. Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeterior Biodegrad. 62(3):219–225. doi:10.1016/j.ibiod.2008.01.016.
  • Dudášová H, Lukáčová L, Murínová S, Puškárová A, Pangallo D, Dercová K. 2014. Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms . J Basic Microbiol. 54(4):253–260. doi:10.1002/jobm.201200369.
  • Furukawa K, Simon J, Chakrabarty A. 1983. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis. J Bacteriol. 154(3):1356–1362.
  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176(1):20–30. doi:10.1016/j.plantsci.2008.09.014.
  • Gilbert ES, Crowley DE. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol. 63(5):1933–1938.
  • Hatamian-Zarmi A, Shojaosadati SA, Vasheghani-Farahani E, Hosseinkhani S, Emamzadeh A. 2009. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. Int Biodeterior Biodegrad. 63(6):788–794. doi:10.1016/j.ibiod.2009.06.009.
  • Ijaz A, Imran A, Haq AU, Khan Q, Afzal M. 2016. Phytoremediation: recent advances in plant- endophytic synergistic interactions. Plant Soil. 405(1–2):179–195. doi:10.1007/s11104-015-2606-2.
  • Ionescu M, Beranova K, Dudkova V, Kochankova L, Demnerova K, Macek T, Mackova M. 2009. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int Biodeterior Biodegrad. 63(6):667–672. doi:10.1016/j.ibiod.2009.03.009.
  • Jha P, Panwar J, Jha P. 2015. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol. 12(2):789–802. doi:10.1007/s13762-014-0515-1.
  • Khan S, Afzal M, Iqbal S, Khan QM. 2013. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 90(4):1317–1332. doi:10.1016/j.chemosphere.2012.09.045.
  • Kuhm AE, Stolz A, Knackmuss H-J. 1991. Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation. 2(2):115–120. doi:10.1007/BF00114601.
  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact. 17(1):6–15. doi:10.1094/MPMI.2004.17.1.6.
  • Krivoruchko A, Kuyukina M, Ivshina I. 2019. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts. 9(3):236. doi:10.3390/catal9030236.
  • Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA. 2015. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N Biotechnol. 32(6):559–568. doi:10.1016/j.nbt.2015.03.006.
  • Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acids techniques in bacterial systematics. Chichester: John Wiley & Sons. p. 115–147.
  • Larkin MJ, Kulakov LA, Allen C. 2005. Biodegradation and Rhodococcus-Masters of catabolic versatility. Curr Opin Biotechnol. 16(3):282–290. doi:10.1016/j.copbio.2005.04.007.
  • Leigh MB, Fletcher JS, Fu X, Schmitz FJ. 2002. Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol. 36(7):1579–1583. doi:10.1021/es015702i.
  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS. 2006. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol. 72(4):2331–2342. doi:10.1128/AEM.72.4.2331-2342.2006.
  • Li A, Qu Y, Zhou J, Gou M. 2009. Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci (China). 21(2):211–217. doi:10.1016/S1001-0742(08)62253-6.
  • Li Y, Liang F, Zhu Y, Zhu Y, Wang F. 2013. Phytoremediation of a PCB- contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soils Sediments. 13(5):925–931. doi:10.1007/s11368-012-0618-6.
  • Luo W, D’Angelo EM, Coyne MS. 2007. Plant secondary metabolites, biphenyl, and hydroxypropyl-β-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils. Soil Biol Biochem. 39(3):735–743. doi:10.1016/j.soilbio.2006.09.019.
  • Luo W, D'Angelo EM, Coyne MS. 2008. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere. 70(3):364–373. doi:10.1016/j.chemosphere.2007.07.022.
  • Luo W, Hu C. 2013. Interaction of plant secondary metabolites and organic carbon substrates affected on biodegradation of polychlorinated biphenyl. J Environ Biol. 34(2 Spec No):337–343.
  • Macek T, Mackova M, Káš J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv. 18(1):23–34. doi:10.1016/s0734-9750(99)00034-8.
  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. 2009. Biodegradation potential of the genus Rhodococcus. Environ Int. 35(1):162–177. doi:10.1016/j.envint.2008.07.018.
  • Murínová S, Dercová K, Dudášová H. 2014. Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. Int Biodeterior Biodegrad. 91:52–59. doi:10.1016/j.ibiod.2014.03.011.
  • Murínová S, Dercová K, Tarábek P, Tölgyessy P. 2014. Identification of biodegradation products of biphenyl and 2,3-dihydroxybiphenyl (2, 3-DHB). Acta Chim Slovaca. 7(1):44–51. doi:10.2478/acs-2014-0009.
  • Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. 2016. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. IJMS. 17(8):1205–1236. doi:10.3390/ijms17081205.
  • Passatore L, Rossetti S, Juwarkar AA, Massacci A. 2014. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater. 278:189–202. doi:10.1016/j.jhazmat.2014.05.051.
  • Pieper DH. 2005. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 67(2):170–191. doi:10.1007/s00253-004-1810-4.
  • Pieper DH, Seeger M. 2008. Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol. 15(2–3):121–138. doi:10.1159/000121325.
  • Pino NJ, Munera LM, Penuela GA. 2016. Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria. Bioremed J. 20(2):108–116. doi:10.1080/10889868.2015.1124065.
  • Pulford I, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int. 29(4):529–540. doi:10.1016/S0160-4120(02)00152-6.
  • Roy M, Khara P, Basu S, Dutta T. 2013. Catabolic versatility of Sphingobium sp. strain PNB capable of degrading structurally diverse aromatic compounds. J Bioremed Biodeg. 04(01):1–6. doi:10.4172/2155-6199.1000173.
  • Saleh S, Huang XD, Greenberg BM, Glick BR. 2004. Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward OP, editors. Applied Bioremediation and Phytoremediation. Soil Biology, vol I. Heidelberg: Springer. p 115–134. doi:10.1007/978-3-662-05794-0_6.
  • Singer AC, Thompson IP, Bailey MJ. 2004. The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Curr Opin Microbiol. 7(3):239–244. doi:10.1016/j.mib.2004.04.007.
  • Suenaga H, Goto M, Furukawa K. 2001. Emergence of multifunctional oxygenase activities by random priming recombination. J Biol Chem. 276(25):22500–22506. doi:10.1074/jbc.M101323200.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729. doi:10.1093/molbev/mst197.
  • Yang X, Xue R, Shen C, Li S, Gao C, Wang Q, Zhao X. 2011. Genome sequence of Rhodococcus sp. strain R04, a polychlorinated-biphenyl biodegrader. J Bacteriol. 193(18):5032–5033. doi:10.1128/JB.05635-11.
  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ. 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB) contaminated soil. Int J Phytorem. 8(3):199–221. doi:10.1080/15226510600846749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.