213
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synergistic use of Plantago major and effective microorganisms, EM1 to clean up the soil polluted with imidacloprid under laboratory and field condition

References

  • Abdel-Megeed A, El-Nakieb FA. 2008. Bioremediation of dimethoate by effective microorganisms in water. Terres Aquat EnvironToxicol. 2(1):1–4.
  • Alexander M. 2000. Aging, bioavailability, and over stimulation of risk from environmental pollutants. Environ Sci Technol. 34(20):4259–4265. doi:10.1021/es001069+.
  • Anhalt JC, Moorman TB, Koskinen WC. 2007. Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health B. 42(5):509–514. doi:10.1080/03601230701391401.
  • Aronstein BN, Calvillo YM, Alexander M. 1991. Effect of surfactants at low concentration on the desorption and biodegradation of sorbed aromatic compounds. Environ Sci Technol. 25(10):1728–1731. doi:10.1021/es00022a008.
  • Bachlechner G. 1989. Method for high performance liquid chromatographic determination of the insecticide NTN 33893 in soil. Bayer AG, Crop Protec. Res., Chemical Product Development and Environmental Biology, Institute for Product Information and Residue Analysis (Technical report).
  • Barraclough D, Kearney T, Croxford A. 2005. Bound residues: environmental solution or future problem. Environ Pollut. 133(1):85–90. doi:10.1016/j.envpol.2004.04.016.
  • CóndorGolec AF, Lokare C, González Pérez P. 2007. Effective microorganisms: myth or reality? Rev Peru Biol. 14(2):315–319.
  • Derbalah AS, Belal EB. 2008. Biodegradation kinetics of cymoxanil in aquatic system. Chem Ecol. 24(3):169–180. doi:10.1080/02757540802032173.
  • El Kiyumi S, Maalim M, Suleiman R, Bakari S. 2017. Influence of effective microorganisms on qualities of tomatoes (Lycopersicon esculentum) grown on tropical loam soil. J Nat Sci Res. 7(14):45–52.
  • Fernández-Bayo JD, Nogales R, Romero E. 2009. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. J Agric Food Chem. 57(12):5435–5442. doi:10.1021/jf900303j.
  • Fossen M. 2006. Environmental fate of imidacloprid. Sacramento (CA): Environmental Monitoring Department of Pesticide Regulation.
  • Gomaa EAA, Belal MH. 1975. Determination of dimethoate residues in some vegetables and cotton plant. Zagazig J Agric Res. 2:215–221.
  • Harms H, Bosma TNP. 1997. Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol. 18(2–3):97–105. doi:10.1038/sj.jim.2900259.
  • Hladik ML, Dana WK, Kathryn MK. 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region. USA Environ Poll. 193:189–196. doi:10.1016/j.envpol.2014.06.033.
  • Iriti M, Scarafoni A, Pierce S, Castorina G, Vitalini S. 2019. Soil application of elective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different Substrates. IJMS. 20(9):2327. doi:10.3390/ijms20092327.
  • Javaid A, Bajwa R. 2011a. Effect of effective microorganism application on crop growth, yield, and nutrition in Vigna radiata (L.) Wilczek in different soil amendment systems. Commun Soil Sci Plant Anal. 42(17):2112–2121. doi:10.1080/00103624.2011.596240.
  • Javaid A, Bajwa R. 2011b. Field evaluation of effective microorganisms (EM) application for growth, nodulation, and nutrition of mung bean. Turk J Agric For. 35(4):443–452.
  • Jennifer CA, Thomas BM, William CK. 2007. Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health Part B. 42(5):509–514.
  • Jeschke P, Nauen R. 2008. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci. 64(11):1084–1098. doi:10.1002/ps.1631.
  • Joseph DE, Dube JN. 1988. Growth pattern of Azospirillum brasilense in Coaland soil-based carriers. Geobios. 15:191–192.
  • Korade DL, Fulekar MH. 2009. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater. 172(2–3):1344–1350. doi:10.1016/j.jhazmat.2009.08.002.
  • Makris KC, Sarkar D, Datta R. 2010. Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. J Environ Monit. 12(2):399–403. doi:10.1039/B908162C.
  • Mason R, Tennekes H, Sanchez-Bayo F, Jepson PU, Sample Organization 2013. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol. 1(1):3–12. doi:10.7178/jeit.1.
  • Megali L, Glauser G, Rasmann S. 2014. Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron Sustain Dev. 34(3):649–656. doi:10.1007/s13593-013-0187-0.
  • Mullins DE, Young RW, Palmer CP, Hamilton RL, Sherertz PC. 1989. Disposal of concentrated solutions of diazinon using organic absorption and chemical and microbial degradation. Pestic Sci. 25(3):241–254. doi:10.1002/ps.2780250305.
  • Monica S, Karthik L, Mythili S, Sathiavelu A. 2011. Formulation of effective microbial consortia and its application for sewage treatment. J Microb Biochem Technol. 3(3):51–55.
  • Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG. 2009. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun. 380(3):710–714. doi:10.1016/j.bbrc.2009.01.156.
  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15(9):507–514. doi:10.1016/j.tplants.2010.05.007.
  • Preetha G, Stanley J. 2012. Influence of neonicotinoid insecticides on the plant growth attributes of cotton and okra. J Plant Nutr. 35(8):1234–1245. doi:10.1080/01904167.2012.676134.
  • Ramos MAG, Yoshioka SA. 2012. Bioremediation of herbicide Velpar K® in vitro in aqueous solution with application of EM-4 (effective microorganisms). Braz Arch Biol Technol. 55(1):145–149. doi:10.1590/S1516-89132012000100018.
  • Romeh AA. 2009. Phytoremediation of water and soil contaminated with imidacloprid pesticide by Plantago major L. Int J Phytoremed. 12(2):188–199. doi:10.1080/15226510903213936.
  • Romeh AA. 2015. Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicol Environ Saf. 117:124–131.
  • Romeh AA. 2016. Efficiency of Rumex dentatus L. leaves extract for enhancing phytoremediation of Plantago major L. in soil contaminated by carbosulfan. Soil Sediment Contam. 25(8):941–956. doi:10.1080/15320383.2016.1224996.
  • Romeh AA. 2018. Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut. 229(5):147. doi:10.1007/s11270-018-3792-3.
  • Romeh AA, Hendawi MY. 2017. Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. Pestic Biochem Physiol. 142:32–43. doi:10.1016/j.pestbp.2017.01.001.
  • Romeh AA, Saber R. 2020. Green nano-phytoremediation and solubility improving agents for the remediation of chlorfenapyr contaminated soil and water. J Environ Manage. 260:110104. 10.1016/j.jenvman.2020.110104.
  • Rouchaud J, Gustin F, Wauters A. 1996. Imidacloprid insecticide soil metabolism in sugar beet field crops. Bull Environ Contam Toxicol. 56(1):29–36. doi:10.1007/s001289900005.
  • San Miguel A, Ravanel P, Raveton M. 2013. A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Hazard Mater. 244–245:60–69. doi:10.1016/j.jhazmat.2012.11.025.
  • Sanyal N, Hazra D, Pal R, Somchaudhury A, Chowdhury A. 2006. Imidacloprid in processed tea and tea liquor. J Zhejiang Univ Sci B. 7(8):619–622. doi:10.1631/jzus.2006.B0619.
  • Sarkar MA, Roy S, Kole R, Chowdhury KA. 2001. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci. 57(7):598–602. doi:10.1002/ps.328.
  • Sharma S, Singh B. 2014. Persistence of imidacloprid and its major metabolites in sugarcane leaves and juice following its soil application. Int J Environ Anal Chem. 94(4):319–331. doi:10.1080/03067319.2013.853759.
  • Sharifa AA, Neoh YL, Iswadi MI, Khairul O, Abdul Halim MM, Jamaludin Mohamed A, Hing HL. 2008. Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Ann Micros. 8:42–44.
  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL. 1993. Beneficial effects of plants in the remediation of soil and ground water contaminated with organic materials. Crit Rev Environ Sci Technol. 23(1):41–77. doi:10.1080/10643389309388441.
  • Shaw LJ, Burns RG. 2004. Enhanced mineralisation of [U-14C] 2,4- dichlorophenoxyacetic acid in the soil from the rhizosphere of Trifoliumpratense. AEM. 70(8):4766–4774. doi:10.1128/AEM.70.8.4766-4774.2004.
  • Singh BK, Walker A, Wright DJ. 2005. Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: dependence on structural similarity of compounds. Soil Biol Biochem. 37(9):1675–1682. doi:10.1016/j.soilbio.2005.01.030.
  • Steward G, Baute T. 2013. Neonicotinoids and field crop production in Ontario. [accessed 2014 Dec 1]. http://www.omafra.gov.on.ca/english/about/beehealthpresentations/omafcrop.pdf.
  • Sun H, Xu J, Yang S, Liu G, Dai S. 2004. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere. 54(4):569–574. doi:10.1016/S0045-6535(03)00722-7.
  • Weber JR, Huang W. 1996. A distributed reactivity model for sorption by soil and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under non equilibrium conditions. Environ Sci Technol. 30(3):881–888. doi:10.1021/es950329y.
  • Yang XB, Ying GG, Peng PA, Wang L, Zhao JL, Zhang LJ, Yuan P, He HP. 2010. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem. 58(13):7915–7921. doi:10.1021/jf1011352.
  • Zhang BY, Zheng JS, Sharp RG. 2010. Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci. 2:1315–1325. doi:10.1016/j.proenv.2010.10.142.
  • Zhang H, Guo Z, Wu N, Xu W, Han L, Li N, Han Y. 2012. Two novel naphthalene glucosides and an anthraquinone isolated from Rumexdentatus and their antiproliferation activities in four cell lines. Molecules. 17(1):843–850. doi:10.3390/molecules17010843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.