310
Views
28
CrossRef citations to date
0
Altmetric
Articles

Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies

ORCID Icon, , , , , , & show all

References

  • Adekola FA, Abdus–Salam N, Adegoke HI, Adesola MA, Adekeye J. 2012. Removal of Pb(II) from aqueous solution by natural and synthetic calcites. Bull Chem Soc Ethiop. 26(2):195–210. doi:10.4314/bcse.v26i2.4.
  • Adekola F, Adegoke H, Arowosaiye O, Olatunji G. 2020. Kinetic and thermodynamic studies of sorption of lead and cadmium from aqueous solution by Moringa oleifera pod wastes. Int J Environ Waste Manag. 25(1):58–82. doi:10.1504/IJEWM.2020.10026031.
  • Adediran GO, Adediji JF, Adebayo MA, Dada AO. 2009. Removal of Pb2+ and Cr6+ ions aqueous solution by earthworm cast soil. Int J Phys Sci. 4(11):691–697.
  • Ahmad MA, Ahmad N, Bello OS. 2014a. Adsorptive removal of malachite green dye using durian seed-based activated carbon. Water Air Soil Pollut. 225(8):2057. doi:10.1007/s11270-014-2057-z.
  • Ahmad MA, Puad NAA, Bello OS. 2014b. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Indus. 6:18–25. doi:10.1016/j.wri.2014.06.002.
  • Ahmed MA, Brick AA, Mohamed AA. 2017. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere. 174:280–288. doi:10.1016/j.chemosphere.2017.01.147.
  • Akar ST, Ozcan AS, Akar T, Ozcan A, Kaynak Z. 2009. Biosorption of a reactive textile dye from aqueous solution utilizing an agro-waste. Desalinat. 249(2):757–761. doi:10.1016/j.desal.2008.09.012.
  • Aksu Z, Tezer S. 2005. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 40(3–4):1347–1361. doi:10.1016/j.procbio.2004.06.007.
  • Alzaydien AS. 2016. Physical, chemical and adsorptive characteristics of local oak sawdust based activated carbons. Asian J Sci Res. 9 (2):45–56. doi:10.3923/ajsr.2016.45.56.
  • Anisuzzaman SM, Joseph CG, Daud WMABW, Krishnaiah D, Yee HS. 2015. Preparation and characterization of activated carbon from Typha orientalis leaves. Int J Ind Chem. 6(1):9–21. doi:10.1007/s40090-014-0027-3.
  • Arenas CN, Vasco A, Betancur M, Martínez JD. 2017. Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA). Proc Safety Environ Protect. 106:224–238. doi:10.1016/j.psep.2017.01.013.
  • Ayanda OS, Fatoki SO, Adekola FA, Ximba BJ. 2013. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater. Mar Pollut Bull. 72(1):222–230. doi:10.1016/j.marpolbul.2013.04.001.
  • Ayawei N, Ebelegi AN, Wankasi D. 2017. Modelling and interpretation of adsorption isotherms. J Chem. 2017:1–11. doi:10.1155/2017/3039817.
  • Bello OS, Adegoke KA, Fagbenro SO, Lameed SO. 2019. Functionalized coconut husks for rhodamine-B dye sequestration. Appl Water Sci. 9(8):189. doi:10.1007/s13201-019-1051-4.
  • Bello OS, Ahmad MA, Semire B. 2014. Scavenging malachite green dye from aqueous solutions using pomelo (citrusgrandis) peels: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat. 56:1–15. doi:10.1080/19443994.2014.940387.
  • Bello OS, Alabi EO, Adegoke KA, Adegboyega SA, Inyinbor AA, Dada AO. 2020. Rhodamine B dye Sequestration using Gmelina aborea leaf powder. Heliyon. 6 (1):e02872. doi:10.1016/j.heliyon.2019.e02872.
  • Bhatti HN, Hayat J, Iqbal M, Noreen S, Nawaz S. 2018. Biocomposite application for the phosphate ions removal in aqueous medium. J Mater Res Technol. 7(3):300–307. doi:10.1016/j.jmrt.2017.08.010.
  • Bhatti HN, Jabeen A, Iqbal M, Noreen S, Naseem Z. 2017. Adsorptive behaviour of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies. J Mol Liquid. 237:322–333. doi:10.1016/j.molliq.2017.04.033.
  • Boparai HK, Joseph M, O’Carroll DM. 2011. Kinetics and thermodynamics of Cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 186(1):458–465. doi:10.1016/j.jhazmat.2010.11.029.
  • Ciardelli G, Corsi L, Marcucci M. 2001. Membrane separation for waste water reuse in the textile industry. Res Conser Recyc. 31(2):189–197. doi:10.1016/S0921-3449(00)00079-3.
  • Dada AO, Adekola FA, Odebunmi EO. 2014. Isotherm, kinetics and thermodynamics studies of sorption of Cu2+ onto novel zerovalent iron nanoparticles. Covenant J Phys Life Sci. 2(1):24–53.
  • Dada AO, Adekola FA, Odebunmi EO. 2016a. Kinetics and equilibrium models for sorption of Cu(II) onto a novel manganese nano-adsorbent. J Dispersion Sci Technol. 37(1):119–133. doi:10.1080/01932691.2015.1034361.
  • Dada AO, Adekola FA, Odebunmi EO. 2017a. Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chem J. 3:1–20. doi:10.1080/23312009.2017.1351653.
  • Dada AO, Adekola FA, Odebunmi EO. 2017b. Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent manganese (nZVMn): equilibrium, kinetic and thermodynamic studies. Environ Nanotechnnol Monit Manage. 8:63–72. doi:10.1016/j.enmm.2017.05.001.
  • Dada AO, Adekola FA, Odebunmi EO. 2017c. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies. Appl Water Sci. 7(3):1409–1427. doi:10.1007/s13201-015-0360-5.
  • Dada AO, Adekola FA, Odebunmi EO, Inyinbor AA, Akinyemi BA, Ilesanmi D. 2019a. Kinetics and thermodynamics of adsorption of rhodamine B onto bentonite supported nanoscale zerovalent iron nanocomposite. J Phys Conf Ser. 1299:012106. doi:10.1088/1742-6596/1299/1/012106.
  • Dada AO, Latona DF, Ojediran JO, Osasuwa NO. 2016b. Adsorption of Cu(II) onto bamboo supported manganese (BS-Mn) nanocomposite: effect of operational parameters, kinetic, isotherms, and thermodynamic studies. J Appl Sci Environ Manage. 20(2):404–422.
  • Dada AO, Ojediran JO, Okunola AA, Dada FE, Lawal AI, Olalekan AP, Dada O. 2019b. Modelling of biosorption of Pb(II) and Zn(II) ions onto PAMRH: Langmuir, Freundlich, Temkin, Dubinin-Raduskevich, Jovanovic, Flory Huggins, Fowler-Guggenheim and Kiselev comparative isotherm studies. Int J Mech Eng Technnol. 10(2):1048–1058.
  • Dada AO, Ojediran JO, Olalekan AP. 2013. Sorption of Pb2+ from aqueous solution unto modified rice husk: isotherms studies. Adv Phy Chem. 2013:1–6. doi:10.1155/2013/842425.
  • Dada AO, Olalekan AP, Olatunya AM, Dada O. 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J Appl Chem. 3(1):38–45. doi:10.9790/5736-0313845.
  • Dawodu FA, Akpomie KG. 2014. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J Mater Res Technol. 3(2):129–141. doi:10.1016/j.jmrt.2014.03.002.
  • De Carvalho TEM, Fungaro DA, Magdalena CP, Cunico P. 2011. Adsorption of indigo carmine from aqueous solution using coal fly ash and zeolite from fly ash. J Radioanal Nucl Chem. 289(2):617–626. doi:10.1007/s10967-011-1125-8.
  • de Oliveira Brito SM, Andrade HMC, Soares LF, de Azevedo RP. 2010. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. J Hazard Mater. 174(1–3):84–92. doi:10.1016/j.jhazmat.2009.09.020.
  • Deniz F, Tezel Ersanli E. 2019. A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies. Int J Phytoremed. 22:353–362. doi:10.1080/15226514.2019.1663485.
  • Doğan M, Türkyilmaz A, Alkan M, Demirbaş Ö. 2009. Adsorption of copper (II) ions onto sepiolite and electrokinetic properties. Desalin. 238(1–3):257–270. doi:10.1016/j.desal.2008.02.017.
  • Dubinin MM. 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev. 60(2):235–266. doi:10.1021/cr60204a006.
  • Ekpete OA, Horsfall MJ. 2011. Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis Hook F). Res J Chem Sci. 1(3):10–17.
  • Ekpete OA, Marcus AC, Osi V. 2017. Preparation and characterization of activated carbon obtained from plantain (Musa paradisiaca) fruit stem. J Chem. 2017:1–6. doi:10.1155/2017/8635615.
  • Farahani M, Abdullah S, Hosseini S, Shojaeipour S, Kasisaz M. 2011. Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Proc Environ Sci. 10:203–208.
  • Feng Q, Lin Q, Gong F, Sugita S, Shoya M. 2004. Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci. 278(1):1–8. doi:10.1016/j.jcis.2004.05.030.
  • Foo KY, Hameed BH. 2010. Review: insights into the modeling of adsorption isotherm systems. Chem Eng J. 156(1):2–10. doi:10.1016/j.cej.2009.09.013.
  • Freundlich HMF. 1906. über die adsorption in lösungen. Zeit Phys Chem. 57:385–470.
  • Ghaedi M, Ghaedi AM, Negintaji E, Ansari A, Vafaei A, Rajabi M. 2014. Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree. J Indus Eng Chem. 20(4):1793–1803. doi:10.1016/j.jiec.2013.08.033.
  • González G, Pliego-Cuervo YB. 2013. Physicochemical and microtextural characterization of activated carbons produced from water steam activation of three bamboo species. J Anal Appl Pyrolysis. 99:32–39. doi:10.1016/j.jaap.2012.11.004.
  • Guixia Z, Wu X, Xiaoli T, Wang X. 2011. Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci J. 4:19–31. doi:10.2174/1876530001104010019.
  • Halsey G. 1948. Physical Adsorption on non-uniform surfaces. J Chem Phys. 16(10):931–937. doi:10.1063/1.1746689.
  • Harrache Z, Abbas M, Aksil T, Trari M. 2018. Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem J. 144:180–189. doi:10.1016/j.microc.2018.09.004.
  • Hashemian S, Sadeghi B, Mangeli M. 2015. Hydrothermal synthesis of nano-cavities of Al-MCF for adsorption of Indigo Carmine from aqueous solution. J Indus Eng Chem. 21:423–427. doi:10.1016/j.jiec.2014.02.055.
  • Hiew BYZ, Lee LY, Lai KC, Gan S, Thangalazhy-Gopakumar S, Pan GT, Yang TK. 2019. Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ Res. 168:241–253. doi:10.1016/j.envres.2018.09.030.
  • Ho YS, Chiu WT, Hsu CS, Huang CT. 2004. Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy. 73(1–2):55–61. doi:10.1016/j.hydromet.2003.07.008.
  • Ho YS, Porter JF, Mckay G. 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: cop vanamudanper, nickel and lead single component systems. Water Air Soil Poll. 141(1–4):1–33. doi:10.1023/A:1021304828010.
  • Jaikumar V, Ramamurthi V. 2009. Effect of biosorption parameters kinetics isotherm and thermodynamics for acid green dye biosorption from aqueous solution by brewery waste. Int J Chem. 1(1):1–12. doi:10.5539/ijc.v1n1p2.
  • Jovanovic DS. 1969. Physical adsorption of gases I: isotherms for monolayer and multilayer adsorption. Colloid Polym Sci. 235:1203–1214.
  • Kanwal A, Bhatti HN, Iqbal M, Noreen S. 2017. Basic dye adsorption onto clay/MnFe2O4 composite: a mechanistic study. Water Environ Res. 89(4):301–311. doi:10.2175/106143017x14839994522984.
  • Kim YS, Kim JH. 2019. Isotherm, kinetics and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J Chem Thermodyn. 130:104–113. doi:10.1016/j.jct.2018.10.005.
  • Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. 2011. Adsorption behaviour of Nickel (II) onto cashew nut shell, in equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J. 167(1):122–131. doi:10.1016/j.cej.2010.12.010.
  • Lakshmi UR, Srivastava VC, Mall ID, Lataye DH. 2009. Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye. J Environ Manage. 90(2):710–720. doi:10.1016/j.jenvman.2008.01.002.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Mansour RA, Aboeleneen NM, AbdelMonem NM. 2018. Adsorption of cationic dye from aqueous solutions by date pits: equilibrium, kinetic, thermodynamic studies, and batch adsorber design. Int J Phytoremed. 20(10):1062–1074. doi:10.1080/15226514.2018.1460306.
  • Mittal A, Mittal J, Kurup L. 2006. Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. J Hazard Mater B. 137(1):591–602. doi:10.1016/j.jhazmat.2006.02.047.
  • Nethaji S, Sivasamy A, Mandal AB. 2013. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol. 10(2):231–242. doi:10.1007/s13762-012-0112-0.
  • Noreen S, Bhatti HN, Zuber M, Zahid M, Asgher M. 2017. Removal of actacid orange-RL dye using biocomposites: modeling studies. Pol J Environ Stud. 26(5):2125–2134. doi:10.15244/pjoes/68446.
  • Okieimen F.E, Okiemen CO, Wuana RA. 2007. Preparation and characterization of activated carbon from rice husks. J Chem Soc. 32:126–136.
  • Olakunle MO, Inyinbor AA, Dada AO, Bello OS. 2018. Combating dye pollution using cocoa pod husks: a sustainable approach. Int J Sustain Eng. 11 (1):4–15. doi:10.1080/19397038.2017.139302.
  • Otero M, Rozada F, Calvo L.F, Garcı́a A.I, Morán A. 2003. Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pigm. 57(1):55–65. doi:10.1016/S0143-7208(03)00005-6.
  • Petcu AR, Lazar CA, Rogozea EA, Olteanu NL, Meghea A, Mihaly M. 2016. Non-ionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters. Sep Purif Technol. 158:155–159. doi:10.1016/j.seppur.2015.12.002.
  • Piccin JS, Dotto GL, Pinto L. 2011. Adsorption isotherms and thermochemical data of FD & C red № 40 binding by chitosan. Braz J Chem Eng. 28 (2):295–304. doi:10.1590/S0104-66322011000200014.
  • Prado AGS, Torres JD, Faria EA, Dias S. 2004. Comparative adsorption studies of indigo carmine dye on chitin and chitosan. J Colloid Interface Sci. 277(1):43–47. doi:10.1016/j.jcis.2004.04.056.
  • Ramesh NT, Kirana VD, Ashwini A, Manasa TR. 2017. Calcium hydroxide as low cost adsorbent for the effective removal of indigo carmine dye in water. J Saudi Chem Soc. 21(2):165–171. doi:10.1016/j.jscs.2015.03.001.
  • Rangabhashiyam S, Anu N, Giri Nandagopal MS, Selvaraju N. 2014. Relevance of isotherm models in biosorption of pollutants by agricultural Byproducts. J Environ Chem Eng. 2(1):398–414. doi:10.1016/j.jece.2014.01.014.
  • Rehman R, Zafar J, Nisar H. 2014. Adsorption studies of removal of indigo caramine dye from water by formaldehyde and urea treated cellulosic waste of citrus reticulate peels. Asian J Chem. 26(1):43–47. doi:10.14233/ajchem.2014.15305.
  • Ren YM, Wei XZ, Zhang ML. 2008. Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite Adsorbent. J Hazard Mater. 158(1):14–22. doi:10.1016/j.jhazmat.2008.01.044.
  • Robinson T, McMullan G, Marchant R, Nigam P. 2001. Remediation of dyes textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77(3):247–255. doi:10.1016/S0960-8524(00)00080-8.
  • Samarghandi MR, Hadi M, Moayedi S, Askari FB. 2009. Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran J Environ Health Sci Eng. 6 (4):285–294.
  • Sharma YC, Uma  2010. Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J Chem Eng Data. 55:435–439. doi:10.1021/je900408s.
  • Soliman NK, Moustafa AF, Aboud AA, Halim K. 2018. Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J Mater Res Technol. 8:1798–1808. doi:10.1016/j.jmrt.2018.12.010.
  • Sugumaran P, Priya SV, Rauichandran P, Seshadri S. 2012. Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J Sustain Energy Environ. 3(1):125–132.
  • Kocaman S. 2020. Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids. Int J Phytoremed. 22:551–566. doi:10.1080/15226514.2020.1741509.
  • Tan IAW, Ahmad AL, Hameed BH. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 154(1–3):337–346. doi:10.1016/j.jhazmat.2007.10.031.
  • Temkin MJ, Pyzhev V. 1940. Kinetic of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS. 12:327–356.
  • Uzun I, Güzel F. 2005. Rate studies on the adsorption of some dye stuffes and p-nitrophenol by chitosan and monocarboxymethylate (mcm)-chitosan from aqueous solution. J Hazard Mater. 118(1–3):141–154. doi:10.1016/j.jhazmat.2004.10.006.
  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P. 2014. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym. 113:115–130. doi:10.1016/j.carbpol.2014.07.007.
  • Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 89:31–59.
  • Wong S, Lee Y, Ngadi N, Inuwa IM, Mohamed NB. 2018. Synthesis of activated carbon from spent tea leaves for aspirin removal. Chin J Chem Eng. 26(5):1003–1011. doi:10.1016/j.cjche.2017.11.004.
  • Wu FC, Liu BL, Wu KT, Tseng RL. 2010. A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chemical Engg J. 162(1):21–27. doi:10.1016/j.cej.2010.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.