86
Views
6
CrossRef citations to date
0
Altmetric
Articles

Differential effects of Zn concentrations on Cr(VI) uptake by two Salvinia species: involvement of thiol compounds

, , , &

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24(12):1337–1344. doi:10.1046/j.1365-3040.2001.00778.x.
  • Brasili E, Bavasso I, Petruccelli V, Vilardi G, Valletta A, Bosco CD, Gentili A, Pasqua G, Di Palma L. 2020. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci Rep. 10(1):1–11. doi:10.1038/s41598-020-58639-7.
  • Cherif J, Mediouni C, Ammar WB, Jemal F. 2011. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci. 23(5):837–844. doi:10.1016/S1001-0742(10)60415-9.
  • Cuypers A, Hendrix S, Amaral Dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, et al. 2016. Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci. 7:470. doi:10.3389/fpls.2016.00470.
  • Dhir B. 2009. Salvinia: an aquatic fern with potential use in phytoremediation. Environ We Inter J Sci Technol. 4:23–27.
  • Dhir B, Srivastava S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng. 37(6):893–896. doi:10.1016/j.ecoleng.2011.01.007.
  • Ephraim BE, Ajayi IO, Ugbaja AN. 2018. Pb, Zn, Cu, Ni and Co contents of water and sediments, in relation to phytoremediation and translocation by water hyacinth (Eichhornia crassipes Mart. Solms.) at some creeks of the great Kwa river, Southeastern Nigeria. Int J Environ Pollut Res. 6:16–37.
  • Estrella GN, Sauri DE, Omar ZP, Santamaría JM. 2012. Glutathione plays arole in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot. 75:188–194. doi:10.1016/j.envexpbot.2011.09.001.
  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J, Kynicky J. 2018. Oxidative stress and heavy metals in plants. Rev Environ Contam Toxicol. 245:129–156. doi:10.1007/398_2017_7.
  • Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE. 2017. Metal toxic effects in aquatic ecosystems: modulators of water quality. In: Tutu H, Grover BP, editors. Water quality. Croatia: InTech. p. 59–89.
  • Hoffmann T, Kutter C, Santamaria JM. 2004. Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci. 4(1):61–65. doi:10.1002/elsc.200400008.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. 4th ed. Boca Raton: Taylor & Francis Group.
  • Kalaivanan D, Ganeshamurthy AN. 2016. Mechanisms of heavy metal toxicity in plants. In: Srinivasa Rao NK, Shivashankara KS, Laxman RH, editors. Abiotic stress physiology of horticultural crops. India: Springer. p. 85–103.
  • Kao CH. 2014. Role of hydrogen peroxide in rice plants. Crop Environ Bioinform. 11:1–10.
  • Krems P, Rajfur M, Wacławek M, Kłos A. 2013. The use of water plants in biomonitoring and phytoremediation of waters polluted with heavy metals. Ecol Chem Eng S. 20(2):353–370. doi:10.2478/eces-2013-0026.
  • Kühnlenz T, Hofmann C, Uraguchi S, Schmidt H, Schempp S, Weber M, Lahner B, Salt DE, Clemens S. 2016. Phytochelatin synthesis promotes leaf Zn accumulation of Arabidopsis thaliana plants grown in soil with adequate Zn supply and is essential for survival on Zn-contaminated soil. Plant Cell Physiol. 57(11):2342–2352. doi:10.1093/pcp/pcw148.
  • Li X, Yang Y, Jia L, Chen H, Wei X. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf. 89:150–157. doi:10.1016/j.ecoenv.2012.11.025.
  • Linde AR, Garcia-Vazquez E. 2006. A simple assay to quantify metallothionein helps to learn about bioindicators and environmental health. Biochem Mol Biol Educ. 34(5):360–363. doi:10.1002/bmb.2006.494034052653.
  • Mandal C, Ghosh N, Maiti S, Das K, Gupta S, Dey N, Adak MK. 2013. Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it's modulation by polyamine. Physiol Mol Biol Plants. 19(1):91–103. doi:10.1007/s12298-012-0144-4.
  • Memon SQ, Bhanger MI, Khuhawar MY. 2005. Preconcentration and separation of Cr(III) and Cr(VI) using sawdust as a sorbent. Anal Bioanal Chem. 383(4):619–624. doi:10.1007/s00216-005-3391-1.
  • Mukhopadhyay S, Rana V, Kumar A, Maiti SK. 2017. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environ Sci Pollut Res. 24(29):22990–23005. doi:10.1007/s11356-017-9930-4.
  • Oliveira H. 2012. Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot. 2012:1–8. doi:10.1155/2012/375843.
  • Owlad M, Aroua MK, Daud WAW, Baroutian S. 2009. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 200(1–4):59–77. doi:10.1007/s11270-008-9893-7.
  • Parmar S, Singh V. 2015. Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res. 2:135–142.
  • Pivato M, Fabrega-Prats M, Masi A. 2014. Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys. 560:83–99. doi:10.1016/j.abb.2014.07.018.
  • Polechońska L, Klink A, Dambiec M. 2019. Trace element accumulation in Salvinia natans from areas of various land use types. Environ Sci Pollut Res Int. 26(29):30242–30251. doi:10.1007/s11356-019-06189-5.
  • Poole LB. 2015. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 80:148–157. doi:10.1016/j.freeradbiomed.2014.11.013.
  • Prado C, Pagano E, Prado FE, Rosa M. 2012. Detoxification of Cr(VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes. J Hazard Mater. 239-240:355–361. doi:10.1016/j.jhazmat.2012.09.010.
  • Prado C, Prado FE, Pagano E, Rosa M. 2015. Differential effects of Cr(VI) on the ultrastructure of chloroplast and plasma membrane of Salvinia minima growing in summer and winter. Relationships with lipid peroxidation, electrolyte leakage, photosynthetic pigments, and carbohydrates. Water Air Soil Pollut. 226(2):8. doi:10.1007/s11270-014-2284-3.
  • Prado C, Rosa M, Pagano E, Hilal M, Prado FE. 2010. Seasonal variability of physiological and biochemical aspects of chromium accumulation in outdoor-grown Salvinia minima. Chemosphere. 81(5):584–593. doi:10.1016/j.chemosphere.2010.08.033.
  • Rai PK. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol. 39(9):697–753. doi:10.1080/10643380801910058.
  • Ramakrishna B, Rao S. 2013. Preliminary studies on the involvement of glutathione metabolism and redox status against zinc toxicity in radish seedlings by 28-Homobrassinolide. Environ Exp Bot. 96:52–58. doi:10.1016/j.envexpbot.2013.08.003.
  • Rauch JN, Pacyna JM. 2009. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb and Zn cycles. Global Biogeochem Cycles. 23:1–16.
  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 318:587–599. doi:10.1016/j.jhazmat.2016.07.053.
  • Sahu Y, Deb M, Patel K, Martin-Ramos P, Towett E, Tarkowska-Kukuryk M. 2020. Bioaccumulation of nutrients and toxic elements with macrophytes. J Hazard Toxic Radioact Waste. 24(1):05019007. doi:10.1061/(ASCE)HZ.2153-5515.0000481.
  • Sairam RK, Rao KV, Srivastava GC. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress: antioxidant activity and osmolyte concentration. Plant Sci. 163(5):1037–1046. doi:10.1016/S0168-9452(02)00278-9.
  • Sajad MA, Khan MS, Bahadur S, Naeem A, Ali H, Batool F, Shuaib M, Khan MAS, Batool S. 2020. Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Acta Ecol Sin. 40(2):158–165. doi:10.1016/j.chnaes.2019.12.002.
  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 178:513–533. doi:10.1016/j.chemosphere.2017.03.074.
  • Shanker AK, Djanaguiraman M, Venkateswarlu B. 2009. Chromium interactions in plants: current status and future strategies. Metallomics. 1(5):375–383. doi:10.1039/b904571f.
  • Sidhu G. 2016. Physiological, biochemical and molecular mechanisms of zinc uptake, toxicity and tolerance in plants. J Global Biosci. 5:4603–4633.
  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. 2013. Chromium toxicity and tolerance in plants. Environ Chem Lett. 11(3):229–254. doi:10.1007/s10311-013-0407-5.
  • Souri MK, Hatamian M, Tesfamariam T. 2019. Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem Biol Technol Agric. 6:25.
  • Suñe N, Sánchez G, Caffaratti S, Maine MA. 2007. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut. 145(2):467–473. doi:10.1016/j.envpol.2006.04.016.
  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S. 2009. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol. 149(2):938–948. doi:10.1104/pp.108.127472.
  • Thomé Bizzo AL, Chaves Intorne A, Gomes PH, Suzuki MS, Esteves BS. 2014. Short-term physiological responses to copper stress in Salvinia auriculata Aubl. Acta Limnol Bras. 26(3):268–277. doi:10.1590/S2179-975X2014000300006.
  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B. 2014. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One. 9(1):e87582. doi:10.1371/journal.pone.0087582.
  • Tripathi BN, Mehta SK, Amar A, Gaur JP. 2006. Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere. 62(4):538–544. doi:10.1016/j.chemosphere.2005.06.031.
  • Tsonev T, Lidon F. 2012. Zinc in plants - an overview. Emir J Food Agric. 24:322–333.
  • USEPA (U.S. Environmental Protection Agency) 2005. Priority pollutants. Code of federal regulations. Title 40: Protection of Environment. Chap. I. Appendix A to 40 CFR Part 423. Washington (USA).
  • USEPA (U.S. Environmental Protection Agency). 1994. SW 846 Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington (USA) [cited 2020 Jan 13]. http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3051a.pdf.
  • Weis JS, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 30(5):685–700. doi:10.1016/j.envint.2003.11.002.
  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T. 2009. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol. 100(20):4616–4622. doi:10.1016/j.biortech.2009.04.062.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Youssef MM, Azooz MM. 2013. Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in okra (Hibiscus Esculentus cv. Hassawi). Sci Int. 1(3):29–38. doi:10.5567/sciintl.2013.29.38.
  • Zacchini M, Pietrini F, Scarascia-Mugnozza G, Iori V, Pietrosanti L, Massacci A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197(1-4):23–34. doi:10.1007/s11270-008-9788-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.