219
Views
6
CrossRef citations to date
0
Altmetric
Articles

Increasing CO2 concentration impact upon nutrient absorption and removal efficiency of supra intensive shrimp pond wastewater by marine microalgae Tetraselmis chui

, ORCID Icon, &

References

  • Ali N, Mohammad AW, Jusoh A, Hasan MR, Ghazali N, Kamaruzaman K. 2005. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination. 185(1–3):317–326. doi:10.1016/j.desal.2005.03.084.
  • Amini M, Amini Khoei Z, Erfanifar E. 2019. Nitrate (NO 3−) and phosphate (PO 43−) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal Agric Biotechnol. 19:101097. doi:10.1016/j.bcab.2019.101097.
  • Aslan S, Kapdan IK. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 28(1):64–70. doi:10.1016/j.ecoleng.2006.04.003.
  • Chevalier P, Proulx D, Lessard P, Vincent WF, De La Noüe J. 2000. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol. 12(2):105–112. doi:10.1023/A:1008168128654.
  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 101(9):3097–3105. doi:10.1016/j.biortech.2009.12.026.
  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol. 99(9):3389–3396. doi:10.1016/j.biortech.2007.08.013.
  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 100(2):833–838. doi:10.1016/j.biortech.2008.06.061.
  • de Morais MG, Costa JAV. 2007a. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag. 48(7):2169–2173. doi:10.1016/j.enconman.2006.12.011.
  • de Morais MG, Costa JAV. 2007b. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol. 129(3):439–445. doi:10.1016/j.jbiotec.2007.01.009.
  • De Morais MG, Costa JAV, Morais MG, De, Costa JAV. 2007. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett. 29(9):1349–1352. doi:10.1007/s10529-007-9394-6.
  • de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y. 2008. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol. 99(11):4980–4989. doi:10.1016/j.biortech.2007.09.065.
  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S. 1994. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel. 73(12):1855–1857. doi:10.1016/0016-2361(94)90211-9.
  • Gonçalves AL, Rodrigues CM, Pires JCM, Simões M. 2016. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Res. 14:127–136. doi:10.1016/j.algal.2016.01.008.
  • Gondwe MJ, Guildford SJ, Hecky RE. 2012. Tracing the flux of aquaculture-derived organic wastes in the southeast arm of Lake Malawi using carbon and nitrogen stable isotopes. Aquaculture. 350–353:8–18. doi:10.1016/j.aquaculture.2012.04.030.
  • Hariz HB, Takriff MS, Mohd Yasin NH, Ba-Abbad MM, Mohd Hakimi NIN. 2019. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. J Water Process Eng. 32:100907. doi:10.1016/j.jwpe.2019.100907.
  • Hegaret H. 2007. Impacts of harmful algal blooms on physiological and cellular processes of bivalve molluscs. Thesis. University of Connecticut.
  • Keffer JE, Kleinheinz GT. 2002. Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor. J Ind Microbiol Biotechnol. 29(5):275–280. doi:10.1038/sj.jim.7000313.
  • Kong Q, Li L, Martinez B, Chen P, Ruan R. 2010. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 160(1):9–18. doi:10.1007/s12010-009-8670-4.
  • Lananan F, Abdul Hamid SH, Din WNS, Ali N, Khatoon H, Jusoh A, Endut A. 2014. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp). Int Biodeterior Biodegrad. 95:127–134. doi:10.1016/j.ibiod.2014.06.013.
  • Mallick N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals. 15(4):377–390. 10.1023/A:1020238520948.
  • Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 97(6):841–846. doi:10.1016/j.biortech.2005.04.008.
  • Minowa T, Yokoyama S, Kishimoto M, Okakura T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74(12):1735–1738. doi:10.1016/0016-2361(95)80001-X.
  • Moheimani NR. 2013. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol. 25(2):387–398. doi:10.1007/s10811-012-9873-6.
  • Nayak M, Karemore A, Sen R. 2016. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2biofixation and lipid biosynthesis for biodiesel application. Algal Res. 16:216–223. doi:10.1016/j.algal.2016.03.020.
  • Olguin EJ. 2003. Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv. 22:81–91. 10.1016/j.biotechadv.2003.08.009.
  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL, Inomata H. 2009. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresour Technol. 100(21):5237–5242. doi:10.1016/j.biortech.2009.05.048.
  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M. 2012. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev. 16(5):3043–3053. doi:10.1016/j.rser.2012.02.055.
  • Pouliot Y, Buelna G, Racine C, de la Noüe J. 1989. Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biol Wastes. 29(2):81–91. doi:10.1016/0269-7483(89)90089-X.
  • Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. 2014. CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 6:78–85. doi:10.1016/j.algal.2014.09.007.
  • Ramanathan V. 1988. The greenhouse theory of climate change: a test by an inadvertent global experiment. Science (80-). 240(4850):293–299. doi:10.1126/science.240.4850.293.
  • Sabeti MB, Hejazi MA, Karimi A. 2019. Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: multi-objective optimization and CFD simulation. Chin J Chem Eng. 27(3):639–648. doi:10.1016/j.cjche.2018.05.010.
  • Silva-Benavides AM, Torzillo G. 2012. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol. 24(2):267–276. doi:10.1007/s10811-011-9675-2.
  • Skjånes K, Lindblad P, Muller J. 2007. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng. 24(4):405–413. doi:10.1016/j.bioeng.2007.06.002.
  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 101(15):5892–5896. doi:10.1016/j.biortech.2010.02.088.
  • Tam NFY, Wong YS. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour Technol. 57(1):45–50. doi:10.1016/0960-8524(96)00045-4.
  • Tang D, Han W, Li P, Miao X, Zhong J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 102(3):3071–3076. doi:10.1016/j.biortech.2010.10.047.
  • Tripathi R, Gupta A, Thakur IS. 2019. An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1 Renew Energy. 135:617–625. doi:10.1016/j.renene.2018.12.056.
  • Vezzulli L, Moreno M, Marin V, Pezzati E, Bartoli M, Fabiano M. 2008. Organic waste impact of capture-based Atlantic bluefin tuna aquaculture at an exposed site in the Mediterranean Sea. Estuar Coast Shelf Sci. 78(2):369–384. doi:10.1016/j.ecss.2008.01.002.
  • Voltolina D, Gómez-Villa H, Correa G. 2005. Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresour Technol. 96(3):359–362. doi:10.1016/j.biortech.2004.04.004.
  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 162(4):1174–1186. doi:10.1007/s12010-009-8866-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.