279
Views
16
CrossRef citations to date
0
Altmetric
Articles

Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa

, , , &

References

  • Ahmad I, Akhtar MJ, Mehmood S, Akhter K, Tahir M, Saeed MF, Hussain MB, Hussain S. 2018. Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicol Environ Saf. 148:805–812. doi:10.1016/j.ecoenv.2017.11.054.
  • Ait-El-Mokhtar M, Raja Ben-Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A. 2019. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic. 253:429–438. doi:10.1016/j.scienta.2019.04.066.
  • Anli M, El Kaoua M, Ait-El-Mokhtar M, Boutasknit A, Ben-Laouane R, Toubali S, Baslam M, Lyamlouli K, Hafidi M, Meddich A. 2020. Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv «Boufgous». S Afr J Bot. 132:15–21. doi:10.1016/j.sajb.2020.04.004.
  • Anli M, Symanczik S, El Abbassi A, Ait-el-Mokhtar M, Boutasknit A, Ben Laouane R, Toubali S, Baslam M, Mäder P, Hafidi M, et al. 2020. Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss’. J Plant Biosyst. 3504:1–14. doi:10.1080/11263504.2020.1779848.
  • Asad SA, Farooq M, Afzal A, West H. 2019. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment- A review. Chemosphere. 217:925–941. doi:10.1016/j.chemosphere.2018.11.021.
  • Ashraf S, Ali Q, Ahmad Z, Ashraf S, Naeem H. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 174:714–727. doi:10.1016/j.ecoenv.2019.02.068.
  • Avdiushko SA, Ye XS, Kuc J. 1993. Detection of several enzymatic activities in leaf prints cucumber plant. Physiol Mol Plant Pathol. 42(6):441–454. doi:10.1006/pmpp.1993.1033.
  • Barceló J, Poschenrieder C. 1990. Plant water relations as affected by heavy metal stress: a review. J Plant Nut. 13(1):1–37. doi:10.1080/01904169009364057.
  • Ben-Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S. 2019. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. GesundePflanz. 71(2):135–146. doi:10.1007/s10343-019-00461-x.
  • Cavagnaro TR. 2014. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol Biochem. 78:38–44. doi:10.1016/j.soilbio.2014.07.007.
  • Chan WF, Li H, Wu FY, Wu SC, Wong MH. 2013. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater. 262:1116–1122. doi:10.1016/j.jhazmat.2012.08.020.
  • Chaoua S, Boussaa S, El Gharmali A, Boumezzough A. 2018. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci. 18(4):429–436. doi:10.1016/j.jssas.2018.02.003.
  • Curaqueo G, Schoebitz M, Borie F, Caravaca F, Roldán A. 2014. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. Environ Sci Pollut Res Int. 21(12):7403–7412. doi:10.1007/s11356-014-2696-z.
  • De la Fuente C, Clemente R, Martínez-Alcalá I, Tortosa G, Bernal MP. 2011. Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J Hazard Mater. 186(2–3):1283–1289. doi:10.1016/j.jhazmat.2010.12.004.
  • Downes RW, Salisbury PA, Hely FW, Mackay JHE. 1980. Register of Australian herbage plant cultivars. Aust J Exp Agric. 3:200–201. Retrieved from: https://research.csiro.au.
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3):350–356. doi:10.1021/ac60111a017.
  • El Alaoui A, Bechtaoui N, Benidire L, El Gharmali A, Achouak W, Daoui K, Imziln B, Oufdou K.  2019. Growth and heavy metals uptake by Vicia Faba in mining soil and tolerance of its symbiotic rhizobacteria. Environ Prot Eng. 45(1):83–96. doi:10.5277/epe190107.
  • El Faiz A, Duponnois R, Winterton P, Ouhammou A, Meddich A, Boularbah A, Hafidi M. 2015. Effect of different amendments on growing of Canna indica L. inoculated with AMF on mining substrate. Int J Phytoremediation. 17(1–6):503–513. doi:10.1080/15226514.2014.950408.
  • Fagorzi C, Checcucci A, Cenzo GC, Debiec-Andrzejewska K, Dziewit L, Pini F, Mengoni A. 2018. Harnessing rhizobia to improve heavy-metal phytoremediation by legumes. Genes. 9(11):542. doi:10.3390/genes9110542.
  • Ferrol N, Tamayo E, Vargas P. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot. 67(22):6253–6565. doi:10.1093/jxb/erw403.
  • Garg N, Singla P, Bhandari P. 2015. Metal uptake, oxidative metabolism, and mycorrhization in pigeonpea and pea under arsenic and cadmium stress. Turk J Agric For. 39:234–250. doi:10.3906/tar-1406-121.
  • Hernández I, Alegre L, Munné-Bosch S. 2004. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 24(11):1303–1311. doi:10.1093/treephys/24.11.1303.
  • Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 413(6853):297–299. doi:10.1038/35095041.
  • Ibriz M, Thami-Alami I, Zenasni L. 2004. Production des luzernes des régions pré-sahariennes du Maroc en conditions salines. Fourrages. 180:527–540. Retrieved from: https://pascal-francis.inist.fr.
  • Kanwal S, Bano A, Malik RN. 2015. Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil. Am J Plant Sci. 06(18):2906–2923. doi:10.4236/ajps.2015.618287.
  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, et al. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil. 2(2):111–128. doi:10.5194/soil-2-111-2016.
  • Keesstra SD, Mol G, de Leeuw J, Okx J, Molenaar C, de Cleen M, Visser S. 2018. Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land. 7(4):133. doi:10.3390/land7040133.
  • Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A. 2015. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ. 514:42–48. doi:10.1016/j.scitotenv.2015.01.085.
  • Krishnamurti GS, Naidu R. 2003. Solid–solution equilibria of cadmium in soils. Geoderma. 113(1–2):17–30. doi:10.1016/S0016-7061(02)00313-0.
  • Kumar V, Sharma A, Kaur P, Singh Sidhu GP, Bali AS, Bhardwaj R, Thukral AK, Cerda A. 2019. Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere. 216:449–462. doi:10.1016/j.chemosphere.2018.10.066.
  • Kumar V, Sharma A, Pandita S, Bhardwaj R, Thukral AK, Cerda A. 2020. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int J Sediment Res. 35(5):516–526. doi:10.1016/j.ijsrc.2020.03.012.
  • Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 123:4–15. doi:10.1016/j.phytochem.2016.01.002.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y. 2018. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere. 194:495–503. doi:10.1016/j.chemosphere.2017.12.025.
  • Liu R, Xu S, Li J, Hu Y, Lin Z. 2006. Expression profile of a PAL gene from Astragalus membranaceus var. Mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep. 25(7):705–710. doi:10.1007/s00299-005-0072-7.
  • Lwin CS, Seo BH, Kim HU, Owens G, Kim KR. 2018. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. SoilSci Plant Nutr. 64(2):156–167. doi:10.1080/00380768.2018.1440938.
  • Mäkelä PSA, Munns R, Colmer TD, Condon AG, Peltonen-Sainio P. 1998. Effect of foliar applications of glycine betaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Functional Plant Biol. 25(6):655–663. doi:10.1071/PP98024.
  • Mbarki S, Cerdà A, Brestic M, Mahendra R, Abdelly C, Pascual JA. 2017. Vineyard compost supplemented with trichoderma harzianumt 78 improve saline soil quality. Land Degrad Develop. 28(3):1028–1037. doi:10.1002/ldr.2554.
  • Meddich A, Elouaqoudi FZ, Khadra A, Bourzik W. 2016. Valorisation des déchets d’origine végétale et industrielle par compostage. Revue Des Composites et Des Matériaux Avancés. 26(3–4):451–469. doi:10.3166/rcma.26.451-469.
  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. 2011. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 37(8):1362–1375. doi:10.1016/j.envint.2011.06.003.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi:10.1289/ehp.10608.
  • Midhat L, Ouazzani N, Hejjaj A, Bayo J, Mandi L. 2018. Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: sustainable rehabilitation. Int J Phytoremediation. 20(8):764–772. doi:10.1080/15226514.2018.1425665.
  • Mignardi S, Corami A, Ferrini V. 2013. Immobilization of Co and Ni in mining-impacted soils using phosphate amendments. Water Air Soil Pollut. 224(1447):1–10. doi:10.1007/s11270-013-1447-y.
  • Mongkhonsin B, Nakbanpote W, Hokura A, Nuengchamnong N, Maneechai S. 2016. Phenolic compounds responding to zinc and/or cadmium treatments in Gynura pseudochina (L.) DC. Extracts and biomass. Plant Physiol Biochem. 109:549–560. doi:10.1016/j.plaphy.2016.10.027.
  • Narula A, Kumar S, Srivastava PS. 2005. Abiotic metal stress enhances diosgenin yield in Dioscorea bulbifera L. cultures. Plant Cell Rep. 24(4):250–254. doi:10.1007/s00299-005-0945-9.
  • Navarro-Torre S, Bessadok K, Flores-Duarte NJ, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E. 2020. Helping legumes under stress situations: inoculation with beneficial microorganisms. In: Hasanuzzaman M, editor. Legume crops. IntechOpen. p. 1–10. doi:10.5772/intechopen.91857.
  • Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Caviedes MA. 2011. Legume–Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Khan MS, Zaidi A, Goel R, Musarrat J, editors. Biomanagement of metal-contaminated soils. Vol. 3. Dordrecht (The Netherlands): Springer. p. 95–123.
  • Pandey N, Sharma CP. 2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci. 163(4):753–758. doi:10.1016/S0168-9452(02)00210-8.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–161. doi:10.1016/S0007-1536(70)80110-3.
  • Plenchette C, Furlan V, Fortin JA. 1982. Effects of different endomycorrhizal fungi on five host plants grown on calcine montmorillonite clay. J Am Soc Hort Sci.107:535–538.
  • Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K. 2019. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol. 10:1–11. doi:10.3389/fmicb.2019.01106.
  • Raklami A, Oufdou K, Tahiri A-I, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Meddich A, Redondo-Gómez S, Pajuelo E. 2019. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms. 7(7):212. doi:10.3390/microorganisms7070212.
  • Raklami A, Tahiri A, Bechtaoui N, El Gharmali A, Pajuelo E, Baslam M, Meddich A, Oufdou K. 2020. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. Int J Environ Sci. 99:210–221. doi:10.1016/j.jes.2020.06.032.
  • Rehman MZU, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS. 2016. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf. 133:218–225. doi:10.1016/j.ecoenv.2016.07.023.
  • Sánchez-Pardo B, Zornoza P. 2014. Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicol Environ Saf. 102:1–5. doi:10.1016/j.ecoenv.2014.01.016.
  • Sandeep G, VijayalathaK R, Anitha T. 2019. Heavy metals and its impact in vegetable crops. Int J Chem Stud. 7:1612–1621. Retrieved from: http://www.chemijournal.com/archives/2019/vol7issue1/PartAB/7-1-229-742.pdf.
  • Sarkar A, Asaeda T, Wang Q, Kaneko Y, Rashid MH. 2017. Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora. 234:60–68. doi:10.1016/j.flora.2017.05.011.
  • Shah K, Mankad AU, Reddy MN. 2017. Lead accumulation and its effects on growth and biochemical parameters in Tagetes erecta L. Int J Life Sci Scienti Res. 3(4):1142–1147. doi:10.21276/ijlssr.2017.3.4.7.
  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. 2020. The role of salicylic acid in plants exposed to heavy metals. Molecules. 25(3):540. doi:10.3390/molecules25030540.
  • Sidhu V, Sarkar D, Datta R. 2016. Effects of biosolids and compost amendment on chemistry of soils contaminated with copper from mining activities. Environ Monit Assess. 188:1–9. doi:10.1007/s10661-016-5185-7.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152–178. doi:10.1016/S0076-6879(99)99017-1.
  • Song WY, Yang HC, Shao HB, Zheng AZ, Brestic M. 2014. The alleviative effects of salicylic acid on the activities of catalase and superoxide dismutase in malting barley (Hordeum vulgare L.) Seedling leaves stressed by heavy metals. CLEAN - Soil. Clean Soil Air Water. 42(1):88–97. doi:10.1002/clen.201200310.
  • Strullu DG, Grellier B, Marciniak D, Letouze R. 1986. Micropropagation of chestnut and conditions of mycorrhizal syntheses in vtro. New Phytol. 102(1):95–101. doi:10.1111/j.1469-8137.1986.tb00801.x.
  • Tauzin C, Juste C. 1986. Effet de l’application à long terme de diverses matières fertilisantes sur l’enrichissement en métaux lourds des parcelles. Rapport du contrat 4084/93. Ministère de l’Environnement, France.
  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Measurement of VA mycorrhizal rate of a root system estimation methods research with functional significance. In: Gianinazzi-Pearson V, Gianinazzi S, editors. Physiological and genetical aspects of mycorrhizae. Paris (France): INRA. p. 217–221.
  • Vezza ME, Llanes A, Travaglia C, Agostini E, Talano MA. 2018. Arsenic stress effects on root water absorption in soybean plants: physiological and morphological aspects. Plant Physiol Biochem. 123:8–17. doi:10.1016/j.plaphy.2017.11.020.
  • Vollmannova A, Musilova J, Toth T, Arvay J, Bystricka J, Medvecky M, Daniel J. 2014. Phenolic compounds, antioxidant activity and Cu, Zn, Cd and Pb content in wild and cultivated cranberries and blueberries. Int J Environ An Chem. 94(14–15):1445–1451. doi:10.1080/03067319.2014.974588.
  • Wang L, Ji B, Hu Y, Liu R, Sun W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594–600. doi:10.1016/j.chemosphere.2017.06.025.
  • Wang S, Pan S, Shah GM, Zhang Z, Yang L, Yang S. 2018. Enhancement in arsenic remediation by maize (Zea mays L.) using EDTA in combination with arbuscular mycorrhizal fungi. Appl Ecol Env Res. 16(5):5987–5999. doi:10.15666/aeer/1605_59875999.
  • Wijayawardena MAA, Megharaj M, Naidu R. 2016. Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. Elsevier Inc. 138:175–214. doi:10.1016/bs.agron.2016.03.002.
  • Yang J, Kloepper JW, Ryu CM. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14(1):1–4. doi:10.1016/j.tplants.2008.10.004.
  • Zarik L, Meddich A, Hijri M, Hafidi M, Ouhammou A, Ouahmane L, Duponnois R, Boumezzough A. 2016. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C R Biol. 339(5–6):185–196. doi:10.1016/j.crvi.2016.04.009.
  • Zengin FK, Munzuroglu O. 2005. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracoviensia Ser Bot. 47:157–164.
  • Zhang F, Liu CJ. 2015. Multifaceted regulations of gateway enzyme Phenylalanine Ammonia-Lyase in the biosynthesis of phenylpropanoids. Mol Plant. 8(1):17–27. doi:10.1016/j.molp.2014.11.001.
  • Zhang F, Liu M, Li Y, Che Y, Xiao Y. 2019. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ. 655:1150–1158. doi:10.1016/j.scitotenv.2018.11.317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.