804
Views
18
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of soil contaminated with nickel, cadmium and cobalt

, ORCID Icon &

References

  • Alford ER, Pilon-Smits EA, Paschke MW. 2010. Metallophytes – a view from the rhizosphere. Plant Soil. 337(1–2):33–50. doi:10.1007/s11104-010-0482-3.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR. 2009. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ. 407(8):3024–3032. doi:10.1016/j.scitotenv.2009.01.011.
  • Baker AJM. 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr. 3(1–4):643–654. doi:10.1080/01904168109362867.
  • Barbieri M. 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys. 5(1):1–4. doi:10.4172/2381-8719.1000237.
  • Bartkowiak A, Lemanowicz J, Breza-Boruta B. 2017. Evaluation of the content Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soil exposed to the effect of road traffic pollution. Environ Sci Pollut Res. 24(30):23893–23902. doi:10.1007/s11356-017-0013-3.
  • Bauddh K, Singh RP. 2012. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation. 14(8):772–785. doi:10.1080/15226514.2011.619238.
  • Bayoumi TA. 2012. Bioaccumulation of 137Cs and 60Co from radioactive waste streams using Veronica anagallis-aquatica. BioTech Ind J. 6(8):282–288.
  • Belouchrani AS, Mameri N, Abdi N, Grib H, Lounici H, Drouiche N. 2016. Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L). Ecol Eng. 95:43–49. doi:10.1016/j.ecoleng.2016.06.064.
  • Bhargava A, Carmona FF, Bhargava M, Srivastava S. 2012. Approaches for enhanced phytoextraction of heavy metals. J Environ Manage. 105:103–120. doi:10.1016/j.jenvman.2012.04.002.
  • Bini C, Wahsha M, Fontana S, Maleci L. 2012. Effects of heavy metals on morphological characteristic of Taraxacum officinale Web growing on mine soils in NE Italy. J Geochem Explor. 123:101–108. doi:10.1016/j.gexplo.2012.07.009.
  • Bjelkova M, Gencurova V, Griga M. 2011. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crop Prod. 33(3):761–774. doi:10.1016/j.indcrop.2011.01.020.
  • Bloem J, Breure AM. 2003. Microbial indicators. In: Markert BA, Breure AM, Zechmeister HG, editors. Bioindicators and biomonitors. Principles, concepts and applications. Amsterdam: Elsevier Science Ltd. p. 259–282.
  • Boros-Lajszner E, Wyszkowska J, Kucharski J. 2017. Use of zeolite to neutralise nickel in a soil environment. Environ Monit Assess. 190(1):54. doi:10.1007/s10661-017-6427-z.
  • Boros-Lajszner E, Wyszkowska J, Kucharski J. 2020. Application of white mustard and oats in the phytostabilisation of soil contaminated with cadmium with the addition of cellulose and urea. J Soils Sediments. 20(2):931–942. doi:10.1007/s11368-019-02473-6.
  • Bothe H, Słomka A. 2017. Divergent biology of facultative heavy metal plants. J Plant Physiol. 219:45–61. doi:10.1016/j.jplph.2017.08.014.
  • Boyd RS. 2012. Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 195:88–95. doi:10.1016/j.plantsci.2012.06.012.
  • Cappa JJ, Pilon-Smits EA. 2014. Evolutionary aspects of elemental hyperaccumulation. Planta. 239(2):267–275. doi:10.1007/s00425-013-1983-0.
  • Chaffai R, Koyama H. 2011. Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res. 60:1–49. doi:10.1016/B978-0-12-385851-1.00001-9.
  • Cheraghi M, Lorestani B, Khorasani N, Yousef N, Karami M. 2011. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol Trace Elem Res. 144(1–3):1133–1141. doi:10.1007/s12011-009-8359-0.
  • Cicero-Fernández D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B. 2017. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis. N Biotechnol. 38(Pt B):56–64. doi:10.1016/j.nbt.2016.07.011.
  • Demim S, Drouiche N, Aouabed A, Benayad T, Dendene-Badache O, Semsari S. 2013. Cadmium and nickel: assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol Eng. 61:426–443. doi:10.1016/j.ecoleng.2013.10.016.
  • Demim S, Drouiche N, Aouabed A, Semsari S. 2013. CCD study on the ecophysiological effects of heavy metals on Lemna gibba. Ecol Eng. 57:302–313. doi:10.1016/j.ecoleng.2013.04.041.
  • Ding C, Zhang T, Wang X, Zhou F, Yang Y, Yin Y. 2014. Effects of soil type and genotype on cadmium accumulation by rootstalk crops: implications for phytomanagement. Int J Phytoremediation. 16(7–12):1018–1030. doi:10.1080/15226514.2013.810581.
  • Doskočil L, Pekař M. 2012. Removal of metal ions from a multi-component mixture using natural lignite. Fuel Process Technol. 101:29–34. doi:10.1016/j.fuproc.2012.02.010.
  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M. 2008. Heavy metal distribution between contaminated soil and Paulwonia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere. 72(10):1481–1490. doi:10.1016/j.chemosphere.2008.04.083.
  • Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual. 26(3):776–781. doi:10.2134/jeq1997.00472425002600030026x.
  • Efremova M, Izosimova A. 2012. Contamination of agricultural soils with heavy metals. In: Jakobsson C, editor. Sustainable agriculture. Uppsala: Baltic University Press. p. 250–252.
  • Eskander SB, El-Dien Fa N, Hoballa EM, Hamdy K. 2011. Capability of Lemna gibba to biosorb cesium-137 and cobalt-60 from simulated hazardous radioactive waste solutions. J Microbiol Biotechnol. 1(2):148–163.
  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A. 2007. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 68(2):345–353. doi:10.1016/j.chemosphere.2006.12.058.
  • Fait S, Fakhi S, ElMzibri M, Malek OA, Rachdi B, Faiz Z, Fougrach H, Badri W, Smouni A, Fahr M. 2018. Behavior of As, Cd, Co, Cr, Cu, Pb, Ni, and Zn at the soil/plant interface around an uncontrolled landfill (Casablanca, Morocco). Remediation. 28(4):65–72. doi:10.1002/rem.21577.
  • Fang Z, Hu Z, Zhao H, Yang L, Ding C, Lou L, Cai Q. 2017. Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Grassl Sci. 63(1):36–45. doi:10.1111/grs.12138.
  • Furtak K, Gałązka A. 2019. Enzymatic activity as a popular parameter used to determine the quality of the soil environment. Polish J Agron. 37:22–30. doi:10.26114/pja.iung.385.2019.37.04.
  • Gall JE, Rajakaruna N. 2013. The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Minglin L, editor. Brassicaceae: characterization, functional genomics and health benefits. Hauppauge: Nova. p. 121–148.
  • Gupta DK, Chatterjee S, Datta S, Veer V, Walther C. 2014. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere. 108:134–144. doi:10.1016/j.chemosphere.2014.01.030.
  • Hou Q, Yang Z, Ji J, Yu T, Chen G, Li J, Xia X, Zhang M, Yuan X. 2014. Annual net input fluxes of heavy metals of the agroecosystem in the Yangtze River delta, China. J Geochem Explor. 139(1):68–84. doi:10.1016/j.gexplo.2013.08.007.
  • Javed MT, Akram MS, Tanwir K, Javed Chaudhary H, Ali Q, Stoltz E, Lindberg S. 2017. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicol Environ Saf. 141:216–225. doi:10.1016/j.ecoenv.2017.03.027.
  • Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A. 2014. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem. 83:1–9. doi:10.1016/j.plaphy.2014.07.001.
  • Kabata-Pendias A, Mukherjee A. 2007. Trace elements from soil to human. Berlin (Heidelberg): Springer-Verlag.
  • Krzciuk K, Gałuszka A. 2014. Prospecting for hyperaccumulators of trace elements: a review. Biotechnology. 35(4):1–11. doi:10.3109/07388551.2014.922525.
  • Kucharski J, Wieczorek K, Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J Elem. 16(4/2011):577–589. doi:10.5601/jelem.2011.16.4.07.
  • Laporte M-A, Sterckeman T, Dauguet S, Denaix L, Nguyen C. 2015. Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ Exp Bot. 109:45–53. doi:10.1016/j.envexpbot.2014.07.020.
  • Lia H, Zhang J, Cao Y, Liu C, Li F, Song Y, Hu J, Wang Y. 2020. Role of acid gases in Hg0 removal from flue gas over a novel cobaltcontaining biochar prepared from harvested cobalt-enriched phytoremediation plant. Fuel Process Technol. 207:106478. doi:10.1016/j.fuproc.2020.106478.
  • Liang HM, Lin TH, Chiou JM, Yeh KC. 2009. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut. 157(6):1945–1952. doi:10.1016/j.envpol.2008.11.052.
  • Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Liu W, Zhou Q, An J, Sun Y, Liu R. 2010. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater. 173(1–3):737–743. doi:10.1016/j.jhazmat.2009.08.147.
  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z. 2011. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J Agric Food Chem. 59(15):8324–8330. doi:10.1021/jf201454w.
  • Liu Z, Chen B, Wang L, Urbanovich O, Nagorskaya L, Li X, Tang L. 2020. A review on phytoremediation of mercury contaminated soils. J Hazard Mater. 400:123138. doi:10.1016/j.jhazmat.2020.123138.
  • Maestri E, Marmiroli M, Visioli G, Marmiroli N. 2010. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot. 68(1):1–12. doi:10.1016/j.envexpbot.2009.10.011.
  • Manara A. 2012. Plant responses to heavy metal toxicity. In: Furini A, editor. Plants and heavy metals. Dordrecht: Springer Briefs in Biometals. p. 27–53.
  • Marchand L, Pelosi C, Gonzalez-Centeno MR, Maillard A, Ourry A, Galland W, Teissedre P-L, Bessoule J-J, Mongrand S, Morvan-Bertrand A, et al. 2016. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. Chemosphere. 156:150–162. doi:10.1016/j.chemosphere.2016.04.129.
  • Markert BA, Breure AM, Zechmeister HG. 2003. Bioindicators and biomonitors. Principles, concepts and applications. Amsterdam: Elsevier Science Ltd.
  • Masarovicova E, Kralova K, Kummerova M. 2010. Principles of classification of medical plants as hyperaccumulators or excluders. Acta Physiol Plant. 32(5):823–829. doi:10.1007/s11738-010-0474-1.
  • Massa N, Andreucci F, Poli M, Aceto M, Barbato M, Berta G. 2010. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicol Environ Saf. 73(8):1988–1997. doi:10.1016/j.ecoenv.2010.08.032.
  • McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14 (3):277–282. doi:10.1016/S0958-1669(03)00060-0.
  • Nadgórska-Socha A, Kandziora-Ciupa M, Ciepał R. 2015. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area. Environ Monit Assess. 187:441. doi:10.1007/s10661-015-4680-6.
  • Nadgórska-Socha A, Kandziora-Ciupa M, Ciepał R, Barczyk G. 2016. Robinia pseudoacacia and Melandrium album in trace elements biomonitoring and air pollution tolerance index study. Int J Environ Sci Technol. 13(7):1741–1752. doi:10.1007/s13762-016-1010-7.
  • Nadgórska-Socha A, Ptasiński B, Kita A. 2013. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology. 22(9):1422–1434. doi:10.1007/s10646-013-1129-y.
  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP. 2005. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediation. 7(4):337–349. doi:10.1080/16226510500327210.
  • Nielsen MN, Winding A. 2002. Microorganisms as indicators of soil heath. NERI Technical Report No. 388. Denmark: Ministry of the Environment, National Environmental Research Institute.
  • Nziguheba G, Smolders E. 2008. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ. 390(1):53–57. doi:10.1016/j.scitotenv.2007.09.031.
  • Pogrzeba M, Ciszek D, Galimska-Stypa R, Nowak B, Sas-Nowosielska A. 2016. Ecological strategy for soil contaminated with mercury. Plant Soil. 409(1–2):371–387. doi:10.1007/s11104-016-2936-8.
  • Pollard AJ, Reeves RD, Baker AJM. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217–218:8–17. doi:10.1016/j.plantsci.2013.11.011.
  • Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K. 2008. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation. 10(1):61–72. doi:10.1080/15226510701827077.
  • Rai PK, Panda LLS. 2014. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India. Air Qual Atmos Health. 7(1):93–101. doi:10.1007/s11869-013-0217-8.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Regulation of the Minister of the Environment of 1 2016. September 2016 applicable in Poland (Journal of Laws item 1395).
  • Roccotiello E, Manfredi A, Drava G, Minganti V, Mariotti M, Berta G, Cornara L. 2010. Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L. Ecotoxicol Environ Saf. 73(6):1264–1271. doi:10.1016/j.ecoenv.2010.07.019.
  • Saleh HM. 2012. Water hyacinth for phytoremediation of radioactive wastes simulate contaminated with cesium and cobalt radionuclides. Nucl Eng Des. 242:425–432. doi:10.1016/j.nucengdes.2011.10.023.
  • Saleh HM. 2014. Stability of cemented dried water hyacinth used for biosorption of radionuclides under various circumstances. J Nucl Mater. 446(1–3):124–133. doi:10.1016/j.jnucmat.2013.11.038.
  • Saleh HM, Aglan RF, Mahmoud HH. 2019. Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chem Ecol. 35(2):164–178. doi:10.1080/02757540.2018.1546296.
  • Saleh HM, Aglan RF, Mahmoud HH. 2020. Qualification of corroborated real phytoremediated radioactive wastes under leaching and other weathering parameters. Prog Nucl Energy. 119:103178. doi:10.1016/j.pnucene.2019.103178.
  • Saleh HM, Bayoumi TA, Mahmoud HH, Aglan RF. 2017. Uptake of cesium and cobalt radionuclides from simulated radioactive wastewater by Ludwigia stolonifera aquatic plant. Nucl Eng Des. 315:194–199. doi:10.1016/j.nucengdes.2017.02.018.
  • Saleh HM, Mahmoud HH, Aglan RF, Bayoumi TA. 2019. Biological treatment of wastewater contaminated with Cu(II), Fe(II) and Mn(II) using Ludwigia stolonifera aquatic plant. Environ Eng Manag J. 18(6):1327–1336. doi:10.30638/eemj.2019.126.
  • Saleh HM, Moussa HR, El-Saied FA, Dawoud M, Bayoumi TA, Abdel Wahed RS. 2020. Mechanical and physicochemical evaluation of solidified dried submerged plants subjected to extreme climatic conditions to achieve an optimum waste containment. Prog Nucl Energy. 122:103285. doi:10.1016/j.pnucene.2020.103285.
  • Saleh HM, Moussa HR, El-Saied FA, Dawoud M, Said E, Nouh A. 2020. Adsorption of cesium and cobalt onto dried Myriophyllum spicatum L. from radio-contaminated water: experimental and theoretical study. Prog Nucl Energy. 125:103393. doi:10.1016/j.pnucene.2020.103393.
  • Saleh HM, Moussa HR, Mahmoud HH, El-Saied FA, Dawoud M, Abdel Wahed RS. 2020. Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog Nucl Energy. 118:103147. doi:10.1016/j.pnucene.2019.103147.
  • Salman SA, Elnazer AA, Nazer HAE. 2017. Integrated mass balance of some heavy metals fluxes in Yaakob village, south Sohag, Egypt. Int J Environ Sci Technol. 14(5):1011–1018. doi:10.1007/s13762-016-1200-3.
  • Scott CA, Faruqui NI, Raschid-Sally L. 2004. Wastewater use in irrigated agriculture: management challenges in developing countries. In: Scott CA, Faruqui NI, Raschid-Sally L, editors. Wastewater use in irrigated agriculture. Oxfordshire: CABI. p. 1–10.
  • Serbula SM, Miljkovic DD, Kovacevic RM, Ilic AA. 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf. 76(2):209–214. doi:10.1016/j.ecoenv.2011.10.009.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B. 2011. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut. 159(5):1229–1233. doi:10.1016/j.envpol.2011.01.034.
  • Statsoft Inc Statistica. 2018. Data analysis software system, version 13.1. http://www.statsoft.com
  • Sun Y, Zhou Q, Wang L, Liu W. 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater. 161(2–3):808–814. doi:10.1016/j.jhazmat.2008.04.030.
  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011:1–31. Article ID 939161. doi:10.1155/2011/939161.
  • Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW. 2007. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut. 148(1):107–114. doi:10.1016/j.envpol.2006.10.035.
  • Utmazian MNDS, Wieshammer G, Vega R, Wenzel WW. 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut. 148(1):155–165. doi:10.1016/j.envpol.2006.10.045.
  • Vamerali T, Bandiera M, Mosca G. 2010. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett. 8(1):1–17. doi:10.1007/s10311-009-0268-0.
  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 362(1–2):319–334. doi:10.1007/s11104-012-1287-3.
  • Viehweger K. 2014. How plants cope with heavy metals. Bot Stud. 55(1):35. doi:10.1186/1999-3110-55-35.
  • Wang X, Chen C, Wang J. 2017. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor. Int J Phytoremediation. 19(6):572–578. doi:10.1080/15226514.2016.1267704.
  • Wang Y, Li H, He Z, Guan J, Qian K, Hu J. 2020. Removal of elemental mercury from flue gas using cobalt-containing biomaterial carbon prepared from contaminated Iris sibirica biomass. ACS Omega. 5(12):6288–6298. doi:10.1021/acsomega.9b03605.
  • Wei SH, Teixeira da Silva JA, Zhou QX. 2008. Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater. 150(3):662–668. doi:10.1016/j.jhazmat.2007.05.014.
  • Wei SH, Zhou QX. 2006. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res Int. 13(3):151–155. doi:10.1065/espr2005.06.269.
  • Wójcik M, Sugier P, Siebielec G. 2014. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ. 487:313–322. doi:10.1016/j.scitotenv.2014.04.024.
  • Wyszkowska J, Borowik A, Kucharski M, Kucharski J. 2013. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J Elem. 18(4):769–796. doi:10.5601/jelem.2013.18.4.455.
  • Wyszkowska J, Borowik A, Olszewski J, Kucharski J. 2019. Soil bacterial community and soil enzyme activity depending on the cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. Diversity. 11(12):246. doi:10.3390/d11120246.
  • Xu H, Yu C, Xia X, Li M, Li H, Wang Y, Wang S, Wang C, Ma Y, Zhou G. 2018. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation. Chemosphere. 190:154–165. doi:10.1016/j.chemosphere.2017.09.146.
  • Yadav SK. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot. 76(2):167–179. doi:10.1016/j.sajb.2009.10.007.
  • Zaborowska M, Kucharski J, Wyszkowska J. 2017. Brown algae and basalt meal in maintaining the activity of arylsulfatase of soil polluted with cadmium. Water Air Soil Pollut. 228(8):267. doi:10.1007/s11270-017-3449-7.
  • Zaborowska M, Wyszkowska J, Kucharski J. 2019. Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium. Environ Monit Assess. 192(1):18–20. doi:10.1007/s10661-019-7999-6.
  • Zeng X, Zou D, Wang A, Zhou Y, Liu Y, Li Z, Liu F, Wang H, Zeng Q, Xiao Z. 2020. Remediation of cadmium-contaminated soils using Brassica napus: effect of nitrogen fertilizers. J Environ Manage. 255:109885. doi:10.1016/j.jenvman.2019.109885.
  • Zhang YY, Liu JH, Zhou YM, Gong TY, Wang J, Ge YL. 2013. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater. 260:1100–1107. doi:10.1016/j.jhazmat.2013.06.065.
  • Zhou Q, Yang Y-C, Shen C, He C-T, Yuan J-G, Yang Z-Y. 2017. Comparative analysis between low- and high-cadmium accumulating cultivars of Brassica parachinensis to identify difference of cadmium-induced microRNA and their targets. Plant Soil. 420(1–2):223–237. doi:10.1007/s11104-017-3380-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.