214
Views
2
CrossRef citations to date
0
Altmetric
Articles

Growth and lead uptake by Parkinsonia aculeata L. inoculated with Rhizophagus intraradices

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbasi H, Pourmajidian M, Hodjati S, Fallah A, Nath S. 2017. Effect of soil-applied lead on mineral contents and biomass in Acer cappadocicum, Fraxinus excelsior and Platycladus orientalis seedlings. iForest. 10(4):722–728. doi:10.3832/ifor2251-010.
  • Abbasi H, Pourmajidian M, Hodjati S, Fallah A. 2016. Comparison of lead uptake by four seedling species (Acercappadocicum, Fraxinus excelsior, Thuja orientalis and Cupressus arizonica). Ecopersia. 4(4):1617–1629. 4.4.1617. doi:10.18869/modares.Ecopersia.
  • Alcántar-González G, Sandoval-Villa M. 1999. Manual de análisis químico de tejido vegetal. [Manual of chemical analysis of plant tissue]. Estado de México (México): Sociedad Mexicana de la Ciencia del Suelo.
  • Alori E, Glick B, Babalola O. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 8:971. doi:10.3389/fmicb.2017.00971.
  • Bafeel S. 2008. Contribution of mycorrhizae in phytoremediation of lead contaminated soils by Eucalyptus rostrata plants. World Appl Sci J. 5(4):490–498.
  • Bahraminia M, Zarei M, Ronaghi A, Ghasemi-Fasaei R. 2016. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Int J Phytoremediation. 18(7):730–737. doi:10.1080/15226514.2015.1131242.
  • Bansod B, Kumar T, Thakur R, Rana S, Singh I. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron. 94:443–455. doi:10.1016/j.bios.2017.03.031.
  • Barcos-Arias M, Peña-Cabriales J, Alarcón A, Maldonado-Vega M. 2015. Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. Int J Phytoremediation. 17(1–6):405–413. doi:10.1080/15226514.2014.898023.
  • Bindler R. 2011. Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden. Environ Geochem Health. 33(4):311–329. doi:10.1007/s10653-011-9381-7.
  • Biró I, Németh T, Takács T. 2009. Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Commun Soil Sci Plan. 40(1–6):227–239. doi:10.1080/00103620802646852.
  • Bremner JM. 1965. Total Nitrogen. In: Black CA, Editor. Methods of soil analysis. Part 2: Chemical and microbial properties. Madison (USA): Agronomy. p. 1049–1178.
  • Brundrett MC, Bougher NDB, Grove T, Malajczuk N. 1996. Working with mycorrhizas in forestry and agriculture. Canberra (Australia): Australian Centre for International Agricultural Research.
  • Casas-Fernández J, Sordo J. 2006. Lead: Chemistry, analytical aspects, environmental impact and health effects. Amsterdam (NL): Elsevier.
  • Chaer G, Resende A, Campello E, de Faria S, Boddey R. 2011. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol. 31(2):139–149. doi:10.1093/treephys/tpq116.
  • Chen X, Wu C, Tang J, Hu S. 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere. 60(5):665–671. doi:10.1016/j.chemosphere.2005.01.029.
  • Dietterich L, Gonneau C, Casper B. 2017. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecol Appl. 27(6):1862–1875. doi:10.1002/eap.1573.
  • Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri M, Bogusz D, Smouni A. 2013. Effect of lead on root growth. Front Plant Sci. 4:175. doi:10.3389/fpls.2013.00175.
  • Frioni L, Minasian H, Volfovicz R. 1999. Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. Forest Ecol Manag. 115(1):41–47. doi:10.1016/S0378-1127(98)00432-0.
  • Gerdemann J, Nicolson T. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 46(2):235–244. doi:10.1016/s0007-1536(63)80079-0.
  • González D, Almendros P, Álvarez JM. 2009. Métodos de análisis de elementos en suelos: disponibilidad y fraccionamiento. An Quím. 105(3):205–212.
  • González-Chávez M, Carrillo-González R, Wright S, Nichols K. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut. 130(3):317–323. doi:10.1016/j.envpol.2004.01.004.
  • Hewitt EJ. 1966. Sand and water culture methods used in the study of plant nutrition. Technical Communication 22. Farnham (England): Commonwealth Agricultural Bureau.
  • Huang Y, Xi Y, Gan L, Johnson D, Wu Y, Ren D, Liu H. 2019. Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential. Int J Phytoremediat. 21(10):1041–1049. doi:10.1080/15226514.2019.1594686.
  • Huang L, Zhang H, Song Y, Yang Y, Chen H, Tang M. 2017. Subcellular compartmentalization and chemical forms of lead participate in lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Front Plant Sci. 8:517. doi:10.3389/fpls.2017.00517.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew B, Beeregowda K. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • Kaur G, Singh H, Batish D, Kohli R. 2012. Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol. 33(2):265–269.
  • Koptsik G. 2014. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sc. 47(9):923–939. doi:10.1134/s1064229314090075.
  • Krämer U. 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol. 61(1):517–534. doi:10.1146/annurev-arplant-042809-112156.
  • Küpper H, Küpper F, Spiller M. 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 47(2):259–266. doi:10.1093/jxb/47.2.259.
  • Malekzadeh E, Aliasgharzad N, Majidi J, Abdolalizadeh J, Aghebati-Maleki L. 2016. Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. Eur J Soil Biol. 74:45–51. doi:10.1016/j.ejsobi2016.03.003.
  • Marchetti C. 2013. Role of calcium channels in heavy metal toxicity. ISRN Toxicol. 2013:184360–184369. doi:10.1155/2013/184360.
  • Miransari M. 2011. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol. 193(2):77–81. doi:10.1007/s00203-010-0657-6.
  • Mohammadi K, Shiva K, Sohrabi Y, Gholamreza H. 2011. A review: beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci. 1(9):310–319.
  • Mohnot K, Chatterji U. 1965. Chemico-physiological studies on the imbibition and germination of seeds of Parkinsonia aculeata L. Sterr Bot Z. 112(4):576–585. doi:10.1007/BF01373186.
  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PloS One. 9(6):e90841. doi:10.1371/journal.pone.0090841.
  • Palutoglu M, Akgul B, Suyarko V, Yakovenko M, Kryuchenko N, Sasmaz A. 2018. Phytoremediation of cadmium by native plants grown on mining soil. Bull Environ Contam Toxicol. 100(2):293–297. doi:10.1007/s00128-017-2220-5.
  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V. 2018. Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci. 19(3):787. doi:10.3390/ijms19030787.
  • Phillips J, Hayman D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–161, IN16–IN18. doi:10.1016/S0007-1536(70)80110-3.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J. 2013. Do toxic ions induce hormesis in plants? Plant Sci. 212:15–25. doi:10.1016/j.plantsci.2013.07.012.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM. Reviews of environmental contamination and toxicology. Vol. 213. New York (NY): Springer.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Ravikumar S, Thamizhiniyzn P. 2014. Influence of lead on growth and nutrient accumulation in black gram (Vigna mungo L). Int Lett Nat Sci. 21:22–27. doi:10.18052/www.Scipresscom/ilns.21.22.
  • Ribeiro de Souza S, López de Andrade S, Anjos de Souza L, Schiavinato M. 2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage. 110:299–307. doi:10.1016/j.jenvman.2012.06.015.
  • Ruley A, Sharma N, Sahi S. 2004. Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Bioch. 42(11):899–906. 1. doi:10.1016/j.plaphy.2004.12.00.
  • Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG. 2018. Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ. 643:238–246. doi:10.1016/j.scitotenv.2018.06.199.
  • Sarkar A, Asaeda T, Wang Q, Kaneko Y, Rashid M. 2018. Arbuscular mycorrhiza confers lead tolerance and uptake in Miscanthus sacchariflorus. Chem Ecol. 34(5):454–469. doi:10.1080/02757540.2018.1437150.
  • SAS Institute. 2013. The SAS system for Windows. Release 9.4. Cary (NC, USA): SAS Institute Inc.
  • Scheckel KG, Diamond GL, Burgess MF, Klotzbach JM, Maddaloni M, Miller BW, Partridge CR, Serda SM. 2013. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science. J Toxicol Environ Health B Crit Rev. 16(6):337–380. doi:10.1080/10937404.2013.825216.
  • Schuch U, Kelly J. 2008. Palo verde trees for the urban landscape. Aridus. 20(1):1–8.
  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). 2002. Norma Oficial Mexicana 021-RECNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis [Official Mexican standard 021-RECNT-2000 that stablishes the specifications for fertility, salinity and classification, study, sampling and analysis of soils]. CDMX (México). Diario Oficial.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Shaukat S, Mushtaq M, Siddiqui S. 1999. Effect of cadmium, chromium and lead on seed germination, early seedling growth and phenolic contents of Parkinsonia aculeata L. and Pennisetum americanum (L.) Schumann. Pakistan J Biolog Sci. 2(4):1307–1313. doi:10.3923/pjbs.1999.1307.1313.
  • Shen J, Song L, Müller K, Hu Y, Song Y, Yu W, Wang H, Wu J. 2016. Magnesium alleviates adverse effects of lead on growth, photosynthesis, and ultrastructural alterations of Torreya grandis seedlings. Front Plant Sci. 7:1819. doi:10.3389/fpls.2016.01819.
  • Sieverding E. 1983. Manual de métodos para la investigación de la micorriza vesículo-arbúscular en el laboratorio. [Manual of methods for the investigation of the vesicle-arbuscular mycorrhiza in the laboratory]. Cali (Colombia): Produmedios.
  • Siqueira J, Saggin-Júnior O. 2001. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza. 11(5):245–255. doi:10.1007/s005720100129.
  • Sitko K, Rusinowski S, Kalaji H, Szopiński M, Małkowski E. 2017. Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. Plant Physiol. 175(1):290–302. doi:10.1104/pp.17.00212.
  • Solís-Domínguez F, Valentín-Vargas A, Chorover J, Maier R. 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ. 409(6):1009–1016. doi:10.1016/j.scitotenv.2010.11.020.
  • Tawaraya K, Naito M, Wagatsuma T. 2006. Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr. 29(4):657–665. doi:10.1080/01904160600564428.
  • van Klinken RD, Campbell SD, Heard TA, McKenzie J, March N. 2009. The biology of Australian weeds: 54. 'Parkinsonia aculeata' L. Plant Prot Q. 24(3):100–117.
  • Verma P, Verma RK. 2017. Species diversity of arbuscular mycorrhizal (am) fungi in Dalli-Rajhara iron mine overburden dump of Chhattisgarh (Central India). Int J Curr Microbiol App Sci. 6(4):2766–2781. doi:10.20546/ijcmas.2017.604.320.
  • Wang C, Tian Y, Wang X, Yu H, Lu X, Wang C, Wang H. 2010. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere. 80(9):965–971. doi:10.1016/j.chemosphere.2010.05.049.
  • Wu Z, Wu W, Zhou S, Wu S. 2016. Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi (Brassica chinensis L.). Pedosphere. 26(1):13–26. doi:10.1016/S1002-0160(15)60018-2.
  • Xiao R, Huang Z, Li X, Chen W, Deng Y, Han C. 2017. Lime and phosphate amendment can significantly reduce uptake of Cd and Pb by field-grown rice. Sustainability. 9(3):430. doi:10.3390/su9030430.
  • Xiong Z, Zhao F, Li M. 2006. Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol. 21(2):147–153. doi:10.1002/tox.20167.
  • Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M. 2015. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int. 22(17):13179–13193. doi:10.1007/s11356-015-4521-8.
  • Zhang B, Zhang H, Wang H, Wang P, Wu Y, Wang M. 2018. Effect of phosphorus additions and arbuscular mycorrhizal fungal inoculation on the growth, physiology, and phosphorus uptake of wheat under two water regimes. Commun Soil Sci Plan. 49(7):862–874. doi:10.1080/00103624.2018.1435798.
  • Zhao Y, Peralta-Videa J, Lopez-Moreno M, Saupe G, Gardea-Torresdey J. 2011. Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium (iii) and chromium (vi) on Parkinsonia aculeata L. Int J Phytoremediat. 13(Sup1):17–33. 34. doi:10.1080/15226514.2011.5685.
  • Zhou J, Zhang Z, Zhang Y, Wei Y, Jiang Z. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One. 13(3):e0191139. doi:10.1371/journal.pone.0191139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.