227
Views
5
CrossRef citations to date
0
Altmetric
Articles

Hybrid technologies for remediation of highly Pb contaminated soil: sewage sludge application and phytoremediation

, ORCID Icon, , , &

References

  • Abbas A, Azeem M, Naveed M, Latif A, Bashir S, Ali A, Bilal M, Ali L. 2019. Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int J Phytoremediation. doi:10.1080/15226514.2019.1644286.
  • Abreu-Junior CH, Firme LP, Maldonado CAB, Moraes Neto SP, Alves MC, Muraoka T, Boaretto AE, Gava JL, He Z, Nogueira TA, et al. 2017. Fertilization using sewage sludge in unfertile tropical soils increased wood production in Eucalyptus plantations. J Environ Management. 203:51–58. doi:10.1016/j.jenvman.2017.07.074.
  • Alvarenga P, Gonçalves AP, Fernandes RM, Varennes A, Vallini G, Duarte E, Cunha-Queda AC. 2009. Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere. 74(10):1292–1300. doi:10.1016/j.chemosphere.2008.11.063.
  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 40:44–52. doi:10.1016/j.wasman.2015.01.027.
  • Amin H, Arain BA, Jahangir TM, Abbasi MS, Amin F. 2018. Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geol Ecol Landsc. 2(1):51–60. doi:10.1080/24749508.2018.1452464.
  • Andrade MG, Melo VF, Gabardo J, Souza LCP, Reissmann CB. 2009. Metais pesados em solos de área de mineração e metalurgia de chumbo: I – Fitoextração. Rev Bras Ciênc Solo. 33(6):1879–1888. doi:10.1590/S0100-06832009000600037.
  • Antosiewicz DM. 1993. Mineral status of dicotyledonous crop plants in relation to their constitutional tolerance to lead. Environ Exp Bot. 33(4):575–589. doi:10.1016/0098-8472(93)90032-B.
  • APHA. 1998. Standart methods for the examination of water and wastewater – methods 2540. 20th ed. Washington: American Public Health Association.
  • Belhaj D, Elloumi N, Jerbi B, Zouari M, Abdallah FB, Ayadi H, Kallel M. 2016. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ Sci Pollut Res Int. 23(20):20168–20177. doi:10.1007/s11356-016-7193-0.
  • Brasil. 2006. Resolução CONAMA No 375 de 29 de Agosto de 2006. http://www2.mma.gov.br/port/conama/res/res06/res37506.pdf.
  • Center for Disease Control and Prevention. 2012. National Center for Environmental Health, New Blood Lead Level Information, 2012. http://www.cdc.gov/nceh/lead/ACCLPP/bloodleadlevels.htm.
  • Conesa HM, Faz Á, Arnaldos R. 2007. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere. 66(1):38–44. doi:10.1016/j.chemosphere.2006.05.041.
  • Cunha FG. 2003. Lead human and environmental contamination in the Ribeira valley, in the states of São Paulo and Paraná, Brazil. [Doctoral Thesis]. Campinas (SP/Brazil): University of Campinas.
  • Duarte AP, Melo VF, Brown GG, Pauletti V. 2012. Changes in the forms of lead and manganese in soils by passage through the gut of the tropical endogeic earthworm (Pontoscolex corethrurus). Eur J Soil Biol. 53:32–39. doi:10.1016/j.ejsobi.2012.08.004.
  • Egendorf SP, Groffman P, Moore G, Cheng Z. 2020. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. Int J Phytoremediation. 22:863–872. doi:10.1080/15226514.2020.1774501.
  • Eysink G. 1988. Metais pesados no Vale do Ribeira e em Igunde-Cananéia. Rev CETESB Tecnol. 2:6–13.
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis: part 1 - physical and mineralogical methods. Madson: Soil Science Society of America. p. 383–411.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press.
  • Kahiluoto H, Kuisma M, Ketoja E, Salo T, Heikkinen J. 2015. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environ Sci Technol. 49(4):2115–2122. doi:10.1021/es503387y.
  • Kummer L, Melo VF, Barros YJ, Azevedo JCR. 2010. Uso da análise de componentes principais para agrupamento de amostras de solos com base na granulometria e em características químicas e mineralógicas. RSA. 11(6):469–480. doi:10.5380/rsa.v11i6.20393.
  • Landim PMB, Corsi AC. 2003. Chumbo, zinco e cobre em sedimentos de corrente nos Ribeirões Grande, Perau e Canoas, e Córrego Barrinha no município de Adrianopólis (Vale do Ribeira, PR). Geociências. 22(1):49–61.
  • Li C, Yu F, Li Y, Niu W, Li J, Yang J, Liu K. 2020. Comparative analysis of the seed germination of pakchoi and its phytoremediation efficacy combined with chemical amendment in four polluted soils. Int J Phytoremediation. 22:972–985. doi:10.1080/15226514.2020.1741508.
  • Lindsay WL. 1979. Lead. In: Lindsay WL, editor. Chemical equilibria in soils. 1st ed. New York: Wiley-Interscience. p. 329–341.
  • Madejón E, Mora AP, Felipe E, Burgos P, Cabrera F. 2006. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut. 139(1):40–52. doi:10.1016/j.envpol.2005.04.034.
  • Malone C, Koeppe DE, Miller RJ. 1974. Localization of lead accumulated by corn plants. Plant Physiol. 53(3):388–394. doi:10.1104/pp.53.3.388.
  • Mao L, Tang D, Feng H, Gao Y, Zhou P, Xu L, Wang L. 2015. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination. Environ Sci Pollut Res Int. 22(24):19860–19869. doi:10.1007/s11356-015-5220-1.
  • Martins APL, Reissmann CB. 2007. Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos. RSA. 8(1):1–17. doi:10.5380/rsa.v8i1.8336.
  • Melo VF, Schaefer CEGR, Singh B, Novais RF, Fontes MPF. 2002. Propriedades químicas e cristalográficas da caulinita e dos óxidos de ferro em sedimentos do grupo barreiras no município de Aracruz, estado do Espírito Santo. Rev Bras Ciênc Solo. 26(1):53–64. doi:10.1590/S0100-06832002000100006.
  • Miller WP, Martens DC, Zelazny LW. 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci Soc Am J. 50(3):598–601. doi:10.2136/sssaj1986.03615995005000030011x.
  • Neu S, Müller I, Dudel EG. 2020. Management of trace element-contaminated agricultural land by in situ stabilization combined with phytoexclusion over a three years crop rotation. Int J Phytoremediation. 22:1059–1067. doi:10.1080/15226514.2020.1726869.
  • National Institute of Standards and Technology (NIST). 2010. Soil standard reference materials for element content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. Gaithersburg (MD): NIST Special Publication.
  • Panda D, Mandal L, Barik J. 2020. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. Int J Phytoremediation. 22:1045–1054. doi:10.1080/15226514.2020.1754757.
  • Placek A, Grobelak A, Kacprzak M. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytoremediation. 18:605–618. doi:10.1080/15226514.2015.1086308.
  • Poggere GC, Melo VF, Serrat BM, Mangrich AS, França AA, Corrêa RS, Barbosa JZ. 2019. Clay mineralogy affects the efficiency of sewage sludge in reducing lead retention of soils. J Environ Sci. 80:45–57. doi:10.1016/j.jes.2018.07.017.
  • Pontoni D, Melo VF, Borgo J, Stipp R, Bonfleur EJ. 2020. Integrated assessment of the liquid and solid phases of lead-contaminated soils remediated with phosphate. Geoderma. 360:113993. doi:10.1016/j.geoderma.2019.113993.
  • Salas-Moreno M, Marrugo-Negrete J. 2019. Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. Int J Phytoremediation. 21:462–471. doi:10.1080/15226514.2019.1644291.
  • SBCS. 2004. Comissão de química e fertilidade do solo. Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. 10th ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Silva WR, Silva FBV, Araújo PRM, Nascimento CWA. 2017. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicol Environ Saf. 144:522–530. doi:10.1016/j.ecoenv.2017.06.068.
  • Skowrońska M, Bielińska EJ, Szymański K, Futa B, Antonkiewicz J, Kołodziej B. 2020. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena. 189:104484. doi:10.1016/j.catena.2020.104484.
  • Tessier A, Campbell PGC, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 51(7):844–851. doi:10.1021/ac50043a017.
  • Topal M, Topal EIA. 2020. Phytoremediaton of priority substances (Pb and Ni) by Phragmites australis exposed to poultry slaughterhouse wastewater. Int J Phytoremediation. 22:857–862. doi:10.1080/15226514.2020.1715919.
  • USEPA. 1996. Method 3052 – Microwave assisted acid digestion of siliceous and organically based matrices. Washington, DC: United States Environmental Protection Agency.
  • USEPA. 2007. Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, soils, and oils. Revision 1. Washington, DC: United States Environmental Protection Agency.
  • Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x.
  • Wang Z, Shan X, Zhang S. 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere. 46(8):1163–1171. doi:10.1016/S0045-6535(01)00206-5.
  • Zhang X, Zhang Y, Liu X, Zhang C, Dong S, Liu Q, Deng M. 2019. Cd uptake by Phytolacca americana L. promoted by cornstalk biochar amendments in Cd-contaminated soil. Int J Phytoremediation. 21:176–184. doi:10.1080/15226514.2019.1658707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.