91
Views
4
CrossRef citations to date
0
Altmetric
Articles

The impact of alder litter on chemistry of Technosols developed from lignite combustion waste and natural sandy substrate: a laboratory experiment

ORCID Icon, , &

References

  • Alriksson A, Eriksson HM. 1998. Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. Forest Ecol Manag. 108(3):261–273. doi:10.1016/S0378-1127(98)00230-8.
  • Bak A, Kozik V, Smolinski A, Jampilek J. 2017. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ Res. 28(6):427–449. doi:10.1080/1062936X.2017.1327459.
  • Berg B, Laskowski R. 2005. Litter fall. Adv Ecol Res. 38:19–71. doi:10.1016/S0065-2504(05)38002-0.
  • Binkley D. 1986. Forest nutrition management. New York (NY): John Wiley & Sons.
  • Binkley D. 1992. Mixtures of nitrogen-fixing and non-nitrogen-fixing tree species. In: Cannell MGR, editors. The ecology of mixed species stands of trees. Vol. 11. Oxford (UK): Blackwell Scientific Publications. UK Br Ecol Soc Spec Publ. p. 99–124.
  • Binkley D. 2005. How nitrogen-fixing trees change soil carbon. In: Binkley D, Menyailo O, editors. Tree species effects on soils: implications for global change. Dordrecht (the Netherlands): Kluwer Academic Publishers. p. 155–164.
  • Binkley D, Giardina C. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry. 42(1/2):89–106. doi:10.1023/A:1005948126251.
  • Bhattacharya SS, Chattopadhyay GN. 2002. Increasing bioavailability of phosphorus from fly ash through vermicomposting. J Environ Qual. 31(6):2116–2119. doi:10.2134/jeq2002.2116.
  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. 2011. Chapter one. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron. 110:1–75. doi:10.1016/B978-0-12-385531-2.00001-3.
  • Bradshaw A. 1997. Restoration of mined lands—using natural processes. Ecol Eng. 8(4):255–269. doi:10.1016/S0925-8574(97)00022-0.
  • Celi L, Cerli C, Turner BL, Santoni S, Bonifacio E. 2013. Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia. Plant Soil. 367(1–2):121–134. doi:10.1007/s11104-013-1627-y.
  • Chenu C, Plante F. 2006. Clay‐sized organo‐mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo‐mineral complex’. Eur J Soil Science. 57(4):596–607. doi:10.1111/j.1365-2389.2006.00834.x.
  • Chodak M, Sroka K, Woś B, Pietrzykowski M. 2019. Effect of green alder (Alnus viridis) and black alder (Alnus glutinosa) on chemical and microbial properties of sandy mine soils. Geoderma. 356:113924. doi:10.1016/j.geoderma.2019.113924.
  • Djaković-Sekulić TL, Smoliński A. 2010. Chemometric characterization of s-triazine derivatives in relation to structural parameters and biological activity. Drug Dev Ind Pharm. 36(8):954–961. doi:10.3109/03639040903585168.
  • Durak T. 2012. Changes in diversity of the mountain beech forest herb layer as a function of the forest management method. Forest Ecol Manag. 276:154–164. doi:10.1016/j.foreco.2012.03.027.
  • Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgård B. 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecol Manag. 195(3):373–384. doi:10.1016/j.foreco.2004.02.036.
  • Haynes RJ. 2009. Reclamation and revegetation of fly ash disposal sites – challenges and research needs. J Environ Manage. 90(1):43–53. doi:10.1016/j.jenvman.2008.07.003.
  • Hoogmoed M, Cunningham SC, Baker PJ, Beringer J, Cavagnaro TR. 2014. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agr Ecosyst Environ. 188:80–84. doi:10.1016/j.agee.2014.02.013.
  • Horodecki P, Jagodziński AM. 2017. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecol Manag. 406:1–11. doi:10.1016/j.foreco.2017.09.059.
  • Howaniec N, Smoliński A, Cempa-Balewicz M. 2015. Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas. Energy. 84(5):455–461. doi:10.1016/j.energy.2015.03.011.
  • Hüttl RF, Weber E. 2001. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften. 88(8):322–329. doi:10.1007/s001140100241.
  • Joliffe IT. 1986. Principal components analysis. New York (NY): Springer.
  • Kalbitz K, Solinger S, Park H-H, Michalzik B, Matzner E. 2000. Controls on the dynamics dissolved organic matter in soils: a review. Soil Sci. 165(4):277–304. doi:10.1097/00010694-200004000-00001.
  • Koupar SAM, Hosseini SM, Tabari M, Modirrahmati A, Golchin A, Rad FH. 2011. Effects of pure and mixed plantations of Populous deltoides with Alnus glotinosa on growth and soil properties: a case study of Foman Region, Iran. Afr J Agr Res. 6(23):5261–5265. doi:10.5897/AJAR11.163.
  • Krzaklewski W, Pietrzykowski M, Woś B. 2012. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash Technosols at different substrate improvement. Ecol Eng. 49:35–40. doi:10.1016/j.ecoleng.2012.08.026.
  • Kuznetsova T, Lukjanova A, Mandre M, Lõhmus K. 2011. Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. Forest Ecol Manag. 262(2):56–64. doi:10.1016/j.foreco.2010.09.030.
  • Likus-Cieślik J, Pietrzykowski M, Chodak M. 2018. Chemistry of sulfur-contaminated soil substrate from a former Frasch extraction method sulfur mine leachate with various forms of litter in a controlled experiment. Water Air Soil Pollut. 229(3):71. doi:10.1007/s11270-018-3716-2.
  • Macdonald SE, Landhäusser SM, Skousen J, Franklin J, Frouz J, Hall S, Jacobs DF, Quideau S. 2015. Forest restoration following surface mining disturbance: challenges and solutions. New Forest. 46(5–6):703–732. doi:10.1007/s11056-015-9506-4.
  • Marschner P. 2012. Marschner's mineral nutrition of higher plants. 3rd ed. Aalborg (DNK): Elsevier Ltd.
  • Miletić Z, Knežević M, Stajić S, Košanin O, Đorđević I. 2012. Effect of European black alder monocultures on the characteristics of reclaimed mine soil. Int J Environ Res. 6(3):703–710. doi:10.22059/IJER.2012.541.
  • Parsapour MK, Kooch Y, Hosseini SM, Alavi SJ. 2018. Litter and topsoil in Alnus subcordata plantation on former degraded natural forest land: A synthesis of age-sequence. Soil till Res. 179(6):1–10. doi:10.1016/j.still.2018.01.008.
  • Pietrzykowski M. 2014. Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. J Forestry Res. 25(1):63–74. doi:10.1007/s11676-013-0418-x.
  • Pietrzykowski M, Krzaklewski W. 2007. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Arch Agron Soil Sci. 53(5):473–483. doi:10.1080/03650340701362516.
  • Pietrzykowski M, Woś B, Pająk M, Wanic T, Krzaklewski W, Chodak M. 2018a. The impact of alders (Alnus spp.) on the physico-chemical properties of Technosols on a lignite combustion waste disposal site. Ecol Eng. 120:180–186. doi:10.1016/j.ecoleng.2018.06.004.
  • Pietrzykowski M, Woś B, Pająk M, Wanic T, Krzaklewski W, Chodak M. 2018b. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment. Environ Sci Pollut Res Int. 25(17):17091–17099. doi:10.1007/s11356-018-1892-7.
  • Ringe JM. 1989. Economic aspects of broadcast fertilizer use for tree seedling establishment on surface mines. IJSM. 3(2):93–97. doi:10.1080/09208118908944259.
  • Rode MW. 1995. Aboveground nutrient cycling and forest development on poor sandy soil. Plant Soil. 168–169(1):337–343. doi:10.1007/BF00029346.
  • Sanyal SK, De Datta SK. 1991. Chemistry of phosphorus transformations in soil. In: Stewart BA, editor. Advances in soil science. Vol. 16. New York (NY): Springer. p. 1–120.
  • Schoenau JJ, Bettany JR. 1987. Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci Soc Am J. 51(3):646–651. doi:10.2136/sssaj1987.03615995005100030017x.
  • Skousen J, Zipper CE, McDonald LM, Hubbart JA, Ziemkiewicz PF. 2019. 14 – Sustainable reclamation and water management practices. In: Hirschi J, editor. Advances in productive, safe, and responsible coal mining. Aalborg (DNK): Elsevier Ltd. p. 271–302.
  • Shrestha RK, Lal R. 2011. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma. 161(3–4):168–176. doi:10.1016/j.geoderma.2010.12.015.
  • Uzarowicz Ł, Zagórski Z, Mendak E, Bartmiński P, Szara E, Kondras M, Oktaba L, Turek A, Rogoziński R. 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. CATENA. 157:75–89. doi:10.1016/j.catena.2017.05.010.
  • Weber J, Strączyńska S, Kocowicz A, Gilewska M, Bogacz A, Gwiżdż M, Debicka M. 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. CATENA. 133(1):250–254. doi:10.1016/j.catena.2015.05.016.
  • Wold S, Esbensen K, Geladi P. 1987. Principal components analysis. Chemometr Intell Lab. 2(1–3):37–52. doi:10.1016/0169-7439(87)80084-9.
  • Woś B, Pietrzykowski M. 2015. Simulation of birch and pine litter influence on early stage of reclaimed soil formation process under controlled conditions. J Environ Qual. 44(4):1091–1098. doi:10.2134/jeq2014.07.0315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.