437
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice

, , &

References

  • Chang XX, Duan CQ, Wang HX. 2000. Root excretion and plant resistance to metal toxicity. Ying Yong Sheng Tai Xue Bao. 11(2):315–320.
  • Chen YX, Lin Q, Fang LU, Yun Feng HE. 2000. Study on detoxication of organic acid to raddish under the stress of Pb and Cd. Actaentiae Circumstantiae. 20:467–474. doi:10.13671/j.hjkxxb.2000.04.017.
  • Chen WQ, Shi YL, Wu SL, Zhu YG. 2016. Anthropogenic arsenic cycles: a research framework and features. J Clean Prod. 139:328–336. doi:10.1016/j.jclepro.2016.08.050.
  • Dolphen R, Thiravetyan P. 2019. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria. Chemosphere. 223:448–454. doi:10.1016/j.chemosphere.2019.02.054.
  • Du JB, Han TF, Gai J, Yong TW, Sun X, Wang XC, Yang F, Liu J, Shu K, Liu WG, et al. 2018. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agr. 17(4):747–754. doi:10.1016/S2095-3119(17)61789-1.
  • Fayiga AO, Saha UK. 2016. Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils. Geoderma. 284:132–143. doi:10.1016/j.geoderma.2016.09.003.
  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ. 284(1–3):27–35. doi:10.1016/S0048-9697(01)00854-3.
  • Fu Y, Yang X, Shen H. 2018. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings. Ecotoxicol Environ Saf. 161:534–541. doi:10.1016/j.ecoenv.2018.06.015.
  • Gao SQ, Chen ZY, Li FM, Chong YX, Li HS, Li M, Lin YJ, Ho HY. 2019. Tolerance of Sagittaria pygmaea Miq to heavily polluted sediments and its removal of major pollutants. Acta Sci Circumstantiae. 39:2182–2189. doi:10.13671/j.hjkxxb.2019.0120.
  • Gao Y, Duan AW, Liu ZG, Shen XJ. 2008. Light environment characteristics in maize-soybean strip intercropping system. Ying Yong Sheng Tai Xue Bao. 19(6):1248–1254. doi:10.13287/j.1001-9332.2008.0247.
  • Gao Y, Duan AW, Liu ZG, Shen XJ, Liu ZJ, Chen JP. 2009. Effect of monoculture and intercropping on radiation use efficiency and yield of maize and soybean. Chin J Ecoagric. 17(1):7–12. doi:10.3724/SP.J.1011.2009.00007.
  • Hu JL, Chan PT, Wu FY, Wu SC, Zhang JH, Lin XG, Wong MH. 2013. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Appl Soil Ecol. 63:29–35. doi:10.1016/j.apsoil.2012.09.002.
  • Huang C, Liu Q, Gou F, Li X, Zhang C, van der Werf W, Zhang F. 2017. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition[J]. Field Crops Res. 201:41–51. doi:10.1016/j.fcr.2016.10.021.
  • Kaiming L, En ZJ, Tao Y, Mingzhu L, Ling F. 2014. Effect of rice/arrowhead (Sagittaria sagittifolia) intercropping on diseases, pests and yield of rice. Chin J Ecoagric. 22:757–765. doi:10.3724/SP.J.1011.2014.40202.
  • Kang Z, Zhang W, Qin J, Li S, Yang X, Wei X, Li H. 2020. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicol Environ Saf. 190:110102. doi:10.1016/j.ecoenv.2019.110102.
  • Khan AG. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol. 18(4):355–364. doi:10.1016/j.jtemb.2005.02.006.
  • Li G, Sun GX, Williams PN, Nunes L, Zhu YG. 2011. Inorganic arsenic in Chinese food and its cancer risk. Environ Int. 37(7):1219–1225. doi:10.1016/j.envint.2011.05.007.
  • Li ZX, Chen Z, Chen GL, Xiang YC, Zhu JW, Dai YF, Deng B. 2016. Effects of maize-rape intercropping on Cd uptake and accumulation by maize. Chin J Ecol. 35:26–31. doi:10.13292/j.1000-4890.201601.004.
  • Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Liu XZ, Shi HQ, Chen FG. 2018. Effect assessment of constructed wetlands on the treatment of large-scale swine wastewater. Ecol Environ Sci. 27:2110–2116. doi:10.16258/j.cnki.1674-5906.2018.11.018.
  • Ma J, Lei E, Lei M, Liu YH, Chen TB. 2018. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere. 194:737–744. doi:10.1016/j.chemosphere.2017.11.135.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature. 409(6820):579. doi:10.1038/35054664.
  • Muehe EM, Eisele JF, Daus B, Kappler A, Harter K, Chaban C. 2014. Are rice (Oryza sativa L.) phosphate transporters regulated similarly by phosphate and arsenate? A comprehensive study. Plant Mol Biol. 85(3):301–316. doi:10.1007/s11103-014-0186-9.
  • Ning CC, Chen QY, Hu HJ, Luo SM, Cai KZ. 2017. Effects of rice and water spinach intercropping on the growth, yield, and pest control of rice. Chin J Ecol. 36:2866–2873. doi:10.13292/j.1000-4890.201710.009.
  • Seyfferth AL, Fendorf S. 2012. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol. 46(24):13176–13183. doi:10.1021/es3025337.
  • Seyfferth AL, McCurdy S, Schaefer MV, Fendorf S. 2014. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia. Environ Sci Technol. 48(9):4699–4706. doi:10.1021/es405016t.
  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D. 2014. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep. 4:5784–5784. doi:10.1038/srep05784.
  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT. 1992. Cancer risks from arsenic in drinking water. Environ Health Perspect. 97:259–267. doi:10.1289/ehp.9297259.
  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, et al. 2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA. 107(49):21187–21192. doi:10.1073/pnas.1013964107.
  • Srivastava S, Srivastava S, Bist V, Surabhi A, Reshu C, Vasvi C, Singh PC, Sanjay D, Abhishek N, Lalit A, Puneet SC, et al. 2018. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J Hazard Mater. 351:177–187. doi:10.1016/j.jhazmat.2018.02.039.
  • Tan W, Yu H, Huang C, Li D, Li R, Zhang H, Zhang Y, Zhao X, Wang G, He X, et al. 2018. Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. J Hazard Mater. 359:9–18. doi:10.1016/j.jhazmat.2018.07.026.
  • Taylor GJ, Crowder AA. 1983. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot. 70(8):1254–1257. doi:10.1002/j.1537-2197.1983.tb12474.x.
  • Tomohito A, Yuji M, Koji B. 2009. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice. Environ Sci Technol. 43:1097–2101. doi:10.1021/es8023397.
  • USEPA. 2020. Integrated Risk Information System (IRIS). USA: USEPA. http://www.epa.gov/iris/.
  • Wan X, Lei M, Chen T. 2016. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ. 563–564:796–802. doi:10.1016/j.scitotenv.2015.12.080.
  • Wan XM, Lei M, Chen TB, Yang JX. 2017. Intercropped Pteris vittata L. and Morus alba L. Sci Total Environ. 579:1467–1475. doi:10.1016/j.scitotenv.2016.11.148.
  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH. 2007. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut. 145(1):225–233. doi:10.1016/j.envpol.2006.03.015.
  • Wang Y, Wang S, Xu PP, Liu C, Liu MS, Wang YL, Wang CH, Zhang CH, Ge Y. 2015. Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Biotechnol. 14(3):427–451. doi:10.1007/s11157-015-9371-9.
  • Xiang HM, Zhang JE, Luo MZ, Zhao B, Quan GM. 2013. Effects of intercropping rice with Oenanthe javanica on diseases, pests and weeds hazards and yield of rice. J Ecol Rural Environ. 29:58–63. doi:10.13292/j.1000-4890.201710.009.
  • Yang R, Tang J, Chen X, Hu S. 2007. Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol. 37(3):240–246. doi:10.1016/j.apsoil.2007.07.004.
  • Zavala YJ, Duxbury JM. 2008. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol. 42(10):3856–3860. doi:10.1021/es702747y.
  • Zeng L, Lin X, Zhou F, Qin J, Li H. 2019. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotox Environ Saf. 167:520–530. doi:10.1016/j.ecoenv.2018.10.003.
  • Zhang Y, Xu B, Guo ZF, Han JC, Li HH, Jin L, Chen F, Xiong YQ. 2019. Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J Environ Manage. 237:163–169. doi:10.1016/j.jenvman.2019.02.067.
  • Zhao FJ, Ma JF, Meharg AA, McGrath SP. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181(4):777–794. doi:10.1111/j.1469-8137.2008.02716.x.
  • Zhao FJ, Ma Y, Zhu YG, Tang Z, Mcgrath SP. 2015. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol. 49(2):750–759. doi:10.1021/es5047099.
  • Zhong SX, Yin GC, Chen ZL, Lin QT, Huang RL, Liu DL, Peng HL, Huang L, Wang X, Jiang XL. 2017. Influencing mechanism of Eh, pH and Iron on the release of arsenic in paddy soil. Huan Jing Ke Xue. 38:2530–2537. doi:10.13227/j.hjkx.201611237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.