90
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Performance and efficiency services for the removal of hexavalent chromium from water by common macrophytes

, &

References

  • Addis W, Abebaw A. 2017. Determination of heavy metal concentration in soils used for cultivation of Allium sativum L. (garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cognet Chemistry. 3:1–22.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological profile for Chromium. Atlanta (GA): U.S. Department of Health and Human Services, Public Health Service.
  • Annual Report. 2017–2018. ICAR – Indian Institute of Water management, Bhubaneswar, Page 34.
  • Antonovics J, Bradshaw AD, Turner RD. 1971. Heavy metal tolerance in plants. Adv Ecol Res. 7:2–85.
  • Baker AJM. 1978. Metal tolerance. New Phytol. 80(3):635–642. doi:10.1111/j.1469-8137.1978.tb01596.x.
  • Barcelo J, Poschenrieder C, Gunse B. 1986. Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot. 37(2):178–187. doi:10.1093/jxb/37.2.178.
  • Baudo R, Varinl EG. 1976. Copper, manganese and chromium concentrations in five macrophytes from the delta of River Toce (northern Italy). Mere Ist ltal Idrobiol. 33:305–324.
  • Cespon-Romero RM, Yebra- Biurruin MC, BermejoBarrera MP. 1996. Pre-concentration and speciation of chromium by the determination of total chromium and chromium (III) in natural waters by flame atomic absorption spectrometry with a chelating ion exchange flow injection system. Analyt Chim Acta. 327:37–45.
  • Chandra P, Kulshreshtha K. 2004. Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev. 70(3):313–327. doi:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2.
  • Dhir B. 2009. Salvinia: an aquatic fern with potential use in phytoremediation. Int J Sci Tech. 4:23–27.
  • Dubey CS, Sahoo BK, Nayak NR. 2001. Chromium (VI) in waters in parts of Sukinda chromite valley and health hazards, Orissa, India. Bull Environ Contam Toxicol. 67(4):541–548. doi:10.1007/s001280157.
  • Dushenkov S, Kapulnik Y. 2000. Phytofiltration of metals. In: Ilya R, Ensley BD, editors. Phytoremediation of toxic metals. New York (NY): John Wiley & Sons, Inc. p. 89–106.
  • EPA. 1982. Methods for chemical analysis of water and wastes, EPA-600/4-82-055, December 1982, Methods 218.4 and 218.543. https://www.in.gov/dnr/fishwild/files/Methods_Analysis_Water_Wastes_USEPA_March1983.pdf.
  • Epstein E. 1965. Mineral metabolism. In: Bonner J, Varner JE, editors. Plant biochemistry. New York (NY): Academic Press. p. 438–466.
  • Foy CD, Chaney RL, White MC. 1978. The physiology of metal toxicity in plants. Annu Rev Plant Physiol. 29(1):511–566. doi:10.1146/annurev.pp.29.060178.002455.
  • Galal TM, Eid EM, Dakhil MA, Hassan LM. 2018. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediat. 20(5):440–447. doi:10.1080/15226514.2017.1365343.
  • Hassan HE, Abdel Rahman AA, El-Sherbini EA, Tawfic TA, Abdel Tawab AR. 2012. Phytoremediation of industrial wastewater polluted using water hyacinth roots. J Appl Sci Res. 8(8):3878–3886.
  • Indian Bureau of Mines (IBM). 2013. National mineral inventory: an overview as on 1.4 2010, controller general. Nagpur (India): Indian Bureau of Mines.
  • Jana S. 1988. Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water Air Soil Pollut. 38:105–109.
  • Kleiman ID, Cogliatti DH. 1998. Chromium removal from aqueous solutions by different plant species. Environ Technol. 19(11):1127–1132. doi:10.1080/09593331908616771.
  • Kumar JIN, Soni H, Kumar RN, Bhatt I. 2008. Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turkish J Fish Aquat Sci. 8:193–200.
  • Macnair MR. 1993. Transley review No. 49. The genetic metal tolerance in vascular plants. New Phytol. 124(4):541–559. doi:10.1111/j.1469-8137.1993.tb03846.x.
  • Mayzarah EM, Moersidik SS, Saria L. 2018. Control of chromium hexavalent (Cr -VI) pollution on waste water in nickel ore extraction industry with phytoremediation technology. Paper presented at: E3S Web of Conferences 68, 03011 (2018). doi:10.1051/e3sconf/201868030.
  • Memon AR, Schroder P. 2009. Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int. 16(2):162–175. doi:10.1007/s11356-008-0079-z.
  • Miretzky P, Saralegui A, Cirelli AF. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57(8):997–1005. doi:10.1016/j.chemosphere.2004.07.024.
  • Mishra H, Sahu HB. 2013. Environmental scenario of chromite mining at Sukinda valley- a review. Int J Environ Eng Manag. 4(4):287–292.
  • Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD. 2008. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess. 141(1–3):49–58. doi:10.1007/s10661-007-9877-x.
  • Mohanty M, Patra HK. 2011. Attenuation of chromium toxicity by bioremediation technology. Rev Environ Contam Toxicol. 210:1–34. doi:10.1007/978-1-4419-7615-4_1.
  • Moral R, Gomez I, Pedreno JN, Mataix J. 1996. Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum M). Agrochimica. 40:132–138.
  • Moral R, Pedreno JN, Gomez I, NavarroPedreno J, Mataix J. 1994. Distribution and accumulation of heavy-metals (cd, ni and cr) in tomato plant. Fresenius Environ Bull. 3(7):395–399.
  • Newete SW, Byrne MJ. 2016. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res. 23(11):10630–10643. doi:10.1007/s11356-016-6329-6.
  • Nichols PB, Couch JD, Al Hamdani SH. 2000. Selected physiological responses of Salvinia minima to different chromium concentrations. Aquatic Bot. 68(4):313–319. doi:10.1016/S0304-3770(00)00128-5.
  • Olguín E, Hernández E, Ramos I. 2002. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnol. 22(1–2):121–131. doi:10.1002/1521-3846(200205)22:1/2<121::AID-ABIO121>3.0.CO;2-F.
  • Olguín EJ, Sánchez-Galván G, Pérez-Pérez P. 2007. Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air Soil Pollut. 181(1–4):135–147. doi:10.1007/s11270-006-9285-9.
  • Prasad MN, de Oliveira Freitas HM. 2003. Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol. 6(3):285–321. doi:10.2225/vol6-issue3-fulltext-6.
  • Pratt PF. 1972. Quality criteria for trace elements in irrigation water. California Agricultural Experiment Station. p. 46.
  • Rai UN, Sinha RS, Chandra E. 1996. Metal biomonitoring in water resources of Eastern Ghats, Koraput (Orissa), lndia by aquatic plants. Environ Monit Assess. 43(2):125–137. doi:10.1007/BF00398603.
  • Reid DA. 1971. Genetic control of reaction to aluminium in winter barley. In: Nilan RA, editor. Barley Genetics H - Proe. 2nd Int. Barley Genetics Symp, 1969. Pullman (WA). Washington State University Press. p. 409–413.
  • Rezania S, Din MFM, Taib SM, Dahalan FA, Songip AR, Singh L, Kamyab H. 2016. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int J Phytoremediation. 18(7):679–685. doi:10.1080/15226514.2015.1130018.
  • Saha P, Shinde O, Sarkar S. 2017. Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation. 19(1):87–96. doi:10.1080/15226514.2016.1216078.
  • Sánchez-Galván G, Monroy O, Gómez G, Olguín EJ. 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut. 194(1–4):77–90. doi:10.1007/s11270-008-9700-5.
  • Smith GW, Hayasaka SS, Thayer GW. 1979. Root surface area measurements of Zostera marina and Halodule wrightii. Botanical. 22:347–358.
  • Tang J, Chen C, Chen L, Daroch M, Cui Y. 2017. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species. Environ Sci Pollut Res Int. 24(30):23864–23871. doi:10.1007/s11356-017-0004-4.
  • Toth SJ, Prince AL, Wallace A, Mikkelsen DS. 1948. Rapid quantitative determination of eight mineral elements in plant tissue by a systematic procedure involving use of Flame Photometer. Soil Sci. 66:459–466.
  • USEPA - U.S. Environmental Protection Agency. 1998. Toxicological review of hexavalent chromium. Support of summary information on the integrated risk information system. Washington (DC): USEPA - U.S. Environmental Protection Agency.
  • Verkleij JAC, Schat H. 1990. Mechanism of metal tolerance in higher plants. In: Jonathon Shaw A, editor. Heavy metal tolerance in plants: evolutionary aspects. Boca Rotan (FL): CRC Press. p. 179–193.
  • Vymazal J. 2010. Constructed wetlands for wastewater treatment. Water. 2(3):530–549. doi:10.3390/w2030530.
  • Weerasinghe A, Ariyawnasa S, Weerasooriya R. 2008. Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere. 70(3):521–524. doi:10.1016/j.chemosphere.2007.07.006.
  • Woldemichael D, Feleke Z, Seyoum L. 2011. Potential of water hyacinth (Eichhornia crassipes (mart.) solms) for the removal of chromium from tannery effluent in constructed pond system. Ethiop J Sci. 34(1):49–62.
  • Wolverton BC. 1981. Water hyacinth for controlling water pollution. In Varshney CK, editor, Water pollution and management reviews. New Delhi (India): South Asian Publishers. p. 47–49.
  • www.blacksmithinstitute.org. 2007. The world’s worst polluted places - the top ten of the dirty thirty, a report of a project of Blacksmith Institute.
  • Xu QS, Ji WD, Yang HY, Wang HX, Xu Y, Zhao J, Shi GX. 2009. Cadmium accumulation and phytotoxicity in an aquatic fern, Salvinia natans (Linn.). Acta Ecologica Sinica. 29:3019–3027.
  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA. 2018. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng. 120:274–298. doi:10.1016/j.ecoleng.2018.05.039.
  • Zhu YL, Zayed AM, Qian J‐H, Souza M, Terry N. 1999. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual. 28(1):339–344. doi:10.2134/jeq1999.00472425002800010042x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.