321
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Co-planting of Quercus nuttallii, Quercus pagoda with Solanum nigrum enhanced their phytoremediation potential to multi-metal contaminated soil

, , , , &

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Brooker RW, Bennett AE, Cong W, Daniell TJ, George TS, Hallett PD, Hawes C, Pietro PMI, Jones HG, Karley AJ, et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206(1):107–117. doi:10.1111/nph.13132.
  • Chen L, Zhou S, Shi Y, Wang C, Li B, Li Y, Wu S. 2018. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci Total Environ. 615:141–149. doi:10.1016/j.scitotenv.2017.09.230.
  • Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P. 2016. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation. 18:134–140.
  • Derakhshan Nejad Z, Jung MC, Kim K. 2018. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health. 40(3):927–953. doi:10.1007/s10653-017-9964-z.
  • Etesami H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotox Environ Safe. 147:175–191. doi:10.1016/j.ecoenv.2017.08.032.
  • Fasani E, Manara A, Martini F, Furini A, DalCorso G. 2018. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 41(5):1201–1232. doi:10.1111/pce.12963.
  • Gao L, Xu H, Bi H, Xi W, Bao B, Wang X, Bi C, Chang Y. 2013. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. Plos One. 8(7):e70739. doi:10.1371/journal.pone.0070739.
  • Jiang C, Wu Q, Sterckeman T, Schwartz C, Sirguey C, Ouvrard S, Perriguey J, Morel J. 2010. Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecol Eng. 36(4):391–395. doi:10.1016/j.ecoleng.2009.11.005.
  • Li XG, Xiao J, Ma CX, Salam MMA, Shi JX, Chen GC. 2020. The effect of particle size of bamboo biochar on the phytoremediation of Salix psammophila C. to multi-metal polluted soil. Int J Phytoremediation. doi:10.1080/15226514.2020.1849012.
  • Li XG, Xiao J, Salam MMA, Ma CX, Chen GC. 2020. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi–metals contaminated soil. Int J Phytoremediation. doi:10.1080/15226514.2020.1816893.
  • Lin L, Chen F, Wang J, Liao MA, Lv X, Wang Z, Li H, Deng Q, Xia H, Liang D, et al. 2018. Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotox Environ Safe. 155:109–116. doi:10.1016/j.ecoenv.2018.02.072.
  • Lin L, Liao M, Mei L, Cheng J, Liu J, Luo L, Liu Y. 2014. Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Environ Prog Sustain. 33:1251–1257.
  • Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Lu Q, Li J, Chen F, Liao MA, Lin L, Tang Y, Liang D, Xia H, Lai Y, Wang X, et al. 2017. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum, and Galium aparine. Environ Monit Assess. 189(12):189. doi:10.1007/s10661-017-6322-7.
  • Meng F, Xue H, Wang Y, Zheng B, Wang J. 2018. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil. Environ Technol. 39:356–362.
  • Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum MF. 2015. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res Int. 22(21):16897–16906. doi:10.1007/s11356-015-4883-y.
  • Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah Nawaz MF, Akmal F, Waqar M. 2017. Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotox Environ Safe. 143:236–248.
  • Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM. 2007. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng. 29(4):362–371. doi:10.1016/j.ecoleng.2006.09.024.
  • Rizwan M, Meunier J, Miche H, Keller C. 2012. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater. 209–210:326–334. doi:10.1016/j.jhazmat.2012.01.033.
  • Rostami S, Azhdarpoor A. 2019. The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere. 220:818–827. doi:10.1016/j.chemosphere.2018.12.203.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Shi X, Wang S, Sun H, Chen Y, Wang D, Pan H, Zou Y, Liu J, Zheng L, Zhao X, et al. 2017. Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings. Environ Sci Pollut Res Int. 24(4):3400–3411. doi:10.1007/s11356-016-7979-0.
  • Su BY, Song YX, Song C, Cui L, Yong TW, Yang WY. 2014. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynt. 52(3):332–340. doi:10.1007/s11099-014-0036-7.
  • Sun Y, Bi H, Xu H, Duan H, Peng R, Wang J. 2018. Below-ground interspecific competition of apple (Malus pumila M.)-soybean (Glycine max L. Merr.) intercropping systems based on niche overlap on the Loess Plateau of China. Sustainability-Basel. 10(9):3022. doi:10.3390/su10093022.
  • UdDin I, Bano A, Masood S. 2015. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf. 113:271–278. doi:10.1016/j.ecoenv.2014.12.014.
  • Wang K, Huang H, Zhu Z, Li T, He Z, Yang X, Alva A. 2013. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int J Phytoremediation. 15:283–298.
  • Wang RJ, Wang Y, Sun SY, Cai CJ, Zhang JF. 2020. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China. Environ Sci Pollut Res Int. 27(36):44797–44806. doi:10.1007/s11356-020-10952-4.
  • Wang S, Wei S, Ji D, Bai J. 2015. Co-planting Cd contaminated field using hyperaccumulator Solanum nigrum L. through interplant with low accumulation Welsh onion. Int J Phytoremediation. 17(9):879–884. doi:10.1080/15226514.2014.981247.
  • Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 144(3):307–313. doi:10.1016/S0176-1617(11)81192-2.
  • Whiting SN, Leake JR, McGrath SP, Baker AJM. 2001. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of co-cropped Thlaspi arvense. Environ Sci Technol. 35(15):3237–3241. doi:10.1021/es010644m.
  • Wu QT, Wei ZB, Ouyang Y. 2007. Phytoextraction of metal-contaminated soil by Sedum alfredii H: effects of chelator and co-planting. Water Air Soil Pollut. 180(1–4):131–139. doi:10.1007/s11270-006-9256-1.
  • Xiong P, He C, Oh K, Chen X, Liang X, Liu X, Cheng X, Wu C, Shi Z. 2018. Medicago sativa L. enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in situ. Ecol Eng. 116:61–66. doi:10.1016/j.ecoleng.2018.02.004.
  • Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ. 650:594–603. doi:10.1016/j.scitotenv.2018.09.055.
  • Zeng P, Guo Z, Xiao X, Peng C, Huang B, Feng W. 2019. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. Ecotox Environ Safe. 169:306–315. doi:10.1016/j.ecoenv.2018.11.017.
  • Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G. 2018. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ. 635:92–99. doi:10.1016/j.scitotenv.2018.04.119.
  • Zhang X, Huang G, Bian X, Zhao Q. 2013. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ. 59(2):80–88. doi:10.17221/613/2012-PSE.
  • Zhu S, Ma X, Guo R, Ai S, Liu B, Zhang W, Zhang Y. 2016. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. Int J Phytoremediation. 18(10):1014–1021. doi:10.1080/15226514.2016.1183570.
  • Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L. 2019. Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ. 662:414–421. doi:10.1016/j.scitotenv.2019.01.234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.