285
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms

, , , , , , , , , & show all

References

  • Abdallah MM-S, Abdelgawad ZA, El-Bassiouny HMS. 2016. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot. 103:275–282. doi:10.1016/j.sajb.2015.09.019.
  • Abdul Qados AMA. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci. 10:7–15. doi:10.1016/j.jssas.2010.06.002.
  • Ashraf U, Hussain S, Akbar N, Anjum SA, Hassan W, Tang X. 2018. Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicol Environ Saf. 149:128–134. doi:10.1016/j.ecoenv.2017.11.033.
  • Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X. 2017. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci. 8:259. doi:10.3389/fpls.2017.00259.
  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X. 2015. Lead toxicity in rice: effects, mechanisms, and mitigation strategies-a mini review. Environ Sci Pollut Res Int. 22(23):18318–18332. doi:10.1007/s11356-015-5463-x.
  • Ashraf U, Tang X. 2017. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere. 176:141–155. doi:10.1016/j.chemosphere.2017.02.103.
  • Athar H, Khan A, Ashraf M. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot. 63(1–3):224–231. doi:10.1016/j.envexpbot.2007.10.018.
  • Bernardi C, Chiesa LM, Soncin S, Passero E, Biondi PA. 2008. Determination of carbon monoxide in tuna by gas chromatography with micro-thermal conductivity detector. J Chromatogr Sci. 46(5):392–394. doi:10.1093/chromsci/46.5.392.
  • Chang J, Cheong BE, Natera S, Roessner U. 2019. Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. Plant Physiol Biochem. 144:427–435. doi:10.1016/j.plaphy.2019.10.017.
  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127(2):139–147. doi:10.1016/S0168-9452(97)00115-5.
  • Chinnusamy V, Jagendorf A, Zhu J. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45(2):437–448. doi:10.2135/cropsci2005.0437.
  • Cui W, Fang P, Zhu K, Mao Y, Gao C, Xie Y, Wang J, Shen W. 2014. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf. 105:103–111. doi:10.1016/j.ecoenv.2014.04.009.
  • Fahad S, Adnan M, Noor M, Arif M, Alam M, Khan IA, Ullah H, Wahid F, Mian IA, Jamal Y, et al. 2019. Major constraints for global rice production. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in rice research for abiotic stress tolerance. Duxford: Woodhead Publishing; p. 1–22. doi:10.1016/b978-0-12-814332-2.00001-0.
  • FAO. 2015. FAO cereal supply and demand brief. 2008. Harmonized world soil database (version 1.0). Rome: FAO. http://www.fao.org/worldfoodsituation/csdb/en/FAO/IIASA/ISRIC/ISS-CAS/JRC.
  • FAO. 2019. Statistical databases. Rome: FAO. http://www.fao.org/ag/agl/agll/terrastat.
  • Fitzgerald TL, Waters DLE, Brooks LO, Henry RJ. 2010. Fragrance in rice (Oryza sativa) is associated with reduced yield under salt treatment. Environ Exp Bot. 68(3):292–300. doi:10.1016/j.envexpbot.2010.03.011.
  • Foyer CH, Noctor G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 145:359–388. doi:10.1046/j.1469-8137.2000.00667.x.
  • Frukh A, Siddiqi TO, Khan MIR, Ahmad A. 2020. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem. 146:55–70. doi:10.1016/j.plaphy.2019.11.011.
  • Gao S, Xiao Y, Xu F, Gao X, Cao S, Zhang F, Wang G, Sanders D, Chu C. 2019. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol. 224(1):202–215. doi:10.1111/nph.15962.
  • Gratao PL, Polle A, Lea PJ, Azevedo RA. 2005. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol. 32(6):481–494. doi:10.1071/FP05016.
  • Guan Q, Ding X, Jiang R, Ouyang P, Gui J, Feng L, Yang L, Song L. 2019. Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food Chem. 299:125095. doi:10.1016/j.foodchem.2019.125095.
  • Hou L, Wang T, Jian H, Wang J, Li J, Liu L. 2017. QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agronomica Sinica. 43(2):179–189. (In Chinese with English abstract). doi:10.3724/SP.J.1006.2017.00179.
  • Huang B, Xu S, Xuan W, Li M, Cao Z, Liu K, Ling T, Shen W. 2006. Carbon monoxide alleviates salt‐induced oxidative damage in wheat seedling leaves. J Integr Plant Biol. 48(3):249–254. doi:10.1111/j.1744-7909.2006.00220.x.
  • Huang Z, Xie W, Wang M, Liu X, Ashraf U, Qin D, Zhuang M, Li W, Li Y, Wang S, et al. 2020. Response of rice genotypes with differential nitrate reductase-dependent no synthesis to melatonin under ZnO nanoparticles' (NPs) stress. Chemosphere. 250:126337. doi:10.1016/j.chemosphere.2020.126337.
  • Lee DH, Lee CB. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159(1):75–85. doi:10.1016/S0168-9452(00)00326-5.
  • Li M, Ashraf U, Tian H, Mo Z, Pan S, Anjum SA, Duan M, Tang X. 2016. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol Biochem. 103:167–175. doi:10.1016/j.plaphy.2016.03.009.
  • Li S, Jiang H, Wang J, Wang Y, Pan S, Tian H, Duan M, Wang S, Tang X, Mo Z. 2019. Responses of plant growth, physiological, gas exchange parameters of super and non-super rice to rhizosphere temperature at the tillering stage. Sci Rep. 9(1):17. doi:10.1038/s41598-019-47031-9.
  • Liang W, Ma X, Wan P, Liu L. 2018. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun. 495(1):286–291. doi:10.1016/j.bbrc.2017.11.043.
  • Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W. 2014. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol. 171(2):1–8. doi:10.1016/j.jplph.2013.08.009.
  • Liu X, Huang Z, Li Y, Xie W, Li W, Tang X, Ashraf U, Kong L, Wu L, Wang S, et al. 2020. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol Environ Saf. 196:110525. doi:10.1016/j.ecoenv.2020.110525.
  • MacAdam JW, Nelson CJ, Sharp RE. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol. 99(3):878–879. doi:10.1104/pp.99.3.879.
  • Mbarki S, Sytar O, Cerda A, Zivcak M, Rastogi A, He X, Zoghlami A, Abdelly C, Brestic M. 2018. Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V, Wani SH, Suprasanna P, Phan Tran L-S, editors. Salinity responses and tolerance in plants. Vol. 1. Cham: Springer; p. 85–136. doi:10.1007/978-3-319-75671-4_4.
  • Mekawy AMM, Assaha DV, Yahagi H, Tada Y, Ueda A, Saneoka H. 2015. Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol Biochem. 87:17–25. doi:10.1016/j.plaphy.2014.12.007.
  • Mo Z, Lei S, Ashraf U, Khan I, Li Y, Pan S, Duan M, Tian H, Tang X. 2017. Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. J Cereal Sci. 75:17–24. doi:10.1016/j.jcs.2017.03.014.
  • Mo Z, Li W, Pan S, Fitzgerald T, Xiao F, Tang Y, Wang Y, Duan M, Tian H, Tang X. 2015. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice. 8:9. doi:10.1186/s12284-015-0040-y.
  • Mo Z, Li Y, Nie J, He L, Pan S, Duan M, Tian H, Xiao L, Zhong K, Tang X. 2019. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. Rice. 12(1):74. doi:10.1186/s12284-019-0328-4.
  • Mo Z, Tang Y, Ashraf U, Pan S, Duan M, Tian H, Wang S, Tang X. 2019. Regulations in 2-acetyl-1-pyrroline contents in fragrant rice are associated with water-nitrogen dynamics and plant nutrient contents. J Cereal Sci. 88:96–102. doi:10.1016/j.jcs.2019.05.013.
  • Ohta S. 2012. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta. 1820(5):586–594. doi:10.1016/j.bbagen.2011.05.006.
  • Poonlaphdecha J, Maraval I, Roques S, Audebert A, Boulanger R, Bry X, Gunata Z. 2012. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. J Agric Food Chem. 60(15):3824–3830. doi:10.1021/jf205130y.
  • Salin ML. 1988. Toxic oxygen species and protective systems of the chloroplast. Physiologia Plantarum. 72(3):681–689. doi:10.1111/j.1399-3054.1988.tb09182.x.
  • Shah K, Ritambhara GK, Verma S, Dubey RS. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161(6):1135–1144. doi:10.1016/S0168-9452(01)00517-9.
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 232:1–44. doi:10.1007/978-3-319-06746-9_1.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22(2):123–131. doi:10.1016/j.sjbs.2014.12.001.
  • Sriskantharajah K, Osumi S, Chuamnakthong S, Nampei M, Amas JC, Gregorio GB, Ueda A. 2020. Contribution of two different Na+ transport systems to acquired salinity tolerance in rice. Plant Sci. 297:110517. doi:10.1016/j.plantsci.2020.110517.
  • Su J, Zhang Y, Nie Y, Cheng D, Wang R, Hu H, Chen J, Zhang J, Du Y, Shen W. 2018. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environ Exp Bot. 147:249–260. doi:10.1016/j.envexpbot.2017.12.022.
  • Su N, Wu Q, Chen H, Huang Y, Zhu Z, Chen Y, Cui J. 2019. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: possible involvement of nitric oxide. Environ Pollut. 251:45–55. doi:10.1016/j.envpol.2019.03.094.
  • Su N, Wu Q, Liu Y, Cai J, Shen W, Xia K, Cu J. 2014. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J Agric Food Chem. 62(27):6454–6462. doi:10.1021/jf5019593.
  • Wani AS, Ahmad A, Hayat S, Fariduddin Q. 2013. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci. 20(2):183–193. doi:10.1016/j.sjbs.2013.01.006.
  • Waqas M, Yaning C, Iqbal H, Shareef M, Rehman H, Yang Y. 2017. Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions. J Agro Crop Sci. 203(4):315–322. doi:10.1111/jac.12217.
  • Xia J, Psychogios N, Young N, Wishart DS. 2009. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37 (Web Server issue):W652–W660. doi:10.1093/nar/gkp356.
  • Xie Y, Mao Y, Lai D, Zhang W, Shen W. 2012. H(2) enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One. 7(11):e49800. doi:10.1371/journal.pone.0049800.
  • Xu S, Zhu S, Jiang Y, Wang N, Wang R, Shen W, Yang J. 2013. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil. 370(1–2):47–57. doi:10.1007/s11104-013-1614-3.
  • Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. J Integr Plant Biol. 60(9):796–804. doi:10.1111/jipb.12689.
  • Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M. 2017. Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul. 81(1):31–50. doi:10.1007/s10725-016-0182-y.
  • Zeng J, Zhang M, Sun X. 2013. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One. 8(8):e71038.doi:10.1371/journal.pone.0071038.
  • Zhu J. 2003. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol. 6(5):441–445. doi:10.1016/S1369-5266(03)00085-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.