395
Views
5
CrossRef citations to date
0
Altmetric
Articles

Efficiency of iron modified Pyrus pyrifolia peels biochar as a novel adsorbent for methylene blue dye abatement from aqueous phase: equilibrium and kinetic studies

, , &

References

  • Abdi G, Alizadeh A, Zinadini S, Moradi G. 2018. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Membr. 552:326–335. doi:10.1016/j.memsci.2018.02.018.
  • Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S, Jawad AH, Wilson LD, Yaseen ZM, Al-Kahtani AA, ALOthman ZA. 2021. Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. J Environ Chem Eng. 9(4):105530. doi:10.1016/j.jece.2021.105530.
  • Alver E, Metin AÜ, Brouers F. 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromol. 154:104–113. doi:10.1016/j.ijbiomac.2020.02.330.
  • Baeta BEL, Lima DRS, Silva SDQ, Aquino SFD. 2015. Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye. Chem Eng Sci. 259:936–944. doi:10.1016/j.cej.2014.08.050.
  • Belhouchat N, Zaghouane-Boudiaf H, Viseras C. 2017. Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci. 135:9–15. doi:10.1016/j.clay.2016.08.031.
  • Binh QA, Kajitvichyanukul P. 2019. Adsorption mechanism of dichlorvos onto coconut fibre biochar: the significant dependence of H–bonding and the pore-filling mechanism. Water Sci Technol. 79(5):866–876. doi:10.2166/wst.2018.529.
  • Boyd GE, Adamson AW, Myers LS. 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics. J Am Chem Soc. 69(11):2836–2848. doi:10.1021/ja01203a066.
  • Chen L, Yang S, Zuo X, Huang Y, Cai T, Ding D. 2018. Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chem Eng J. 354:856–865. doi:10.1016/j.cej.2018.08.098.
  • Cho DW, Yoon K, Kwon EE, Biswas JK, Song H. 2017. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ Pollut. 229:942–949. doi:10.1016/j.envpol.2017.07.079.
  • Cruz GJF, Mondal D, Rimaycuna J, Soukup K, Gómez MM, Solis JL, Lang J. 2020. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. J Environ Chem Eng. 8(3):103800. doi:10.1016/j.jece.2020.103800.
  • Dos Santos KJL, Dos Santos G. E d S, de Sá ÍMGL, Ide AH, Duarte J. L d S, de Carvalho SHV, Soletti JI, Meili L. 2019. Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour Technol. 293:122093. doi:10.1016/j.biortech.2019.122093.
  • Dubinin MM, Radushkevich LV. 1947. The equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sect. 55:327–329.
  • Essandoh M, Wolgemuth D, Pittman CU, Mohan D, Mlsna T. 2017. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environ Sci Pollut Res Int. 24(5):4577–4590. doi:10.1007/s11356-016-8188-6.
  • Foo KY, Hameed BH. 2010. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1):2–10. doi:10.1016/j.cej.2009.09.013.
  • Freundlich HMF. 1906. Uber die adsorption in lasungen. Z Phys Chem. 57(1):385–470.
  • Gani KM, Rajpal A, Kazmi AA. 2016. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems. Environ Sci Process Impacts. 18(3):406–416. doi:10.1039/c5em00583c.
  • Güzel F, Sayğılı H, Sayğılı GA, Koyuncu F, Yılmaz C. 2017. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J Clean Prod. 144:260–265. doi:10.1016/j.jclepro.2017.01.029.
  • Hamoud HI, Finqueneisel G, Azambre B. 2017. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system. J Environ Manage. 195(Pt 2):195–207. doi:10.1016/j.jenvman.2016.07.067.
  • Hao Z, Wang C, Yan Z, Jiang H, Xu H. 2018. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere. 211:962–969. doi:10.1016/j.chemosphere.2018.08.038.
  • He Y, Wang X, Huang W, Chen R, Zhang W, Li H, Lin H. 2018. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere. 193:89–99. doi:10.1016/j.chemosphere.2017.10.144.
  • Ho YS, McKay G. 1999. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J Environ Sci Heal. 34(5):1179–1204. doi:10.1080/10934529909376889.
  • Ifthikar J, Wang T, Khan A, Jawad A, Sun T, Jiao X, Chen Z, Wang J, Wang Q, Wang H, et al. 2017. Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications. Bioresour Technol. 238:399–406. doi:10.1016/j.biortech.2017.03.133.
  • Irving L. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403.
  • Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR. 2021. High surface area and mesoporous activated carbon from KOH-activated Dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chin J Chem Eng. 32:281–290. doi:10.1016/j.cjche.2020.09.070.
  • Jawad AH, Bardhan M, Islam MA, Islam MA, Syed-Hassan SSA, Surip SN, ALOthman ZA, Khan MR. 2020. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf Interfaces. 21:100688. doi:10.1016/j.surfin.2020.100688.
  • Jawad AH, Mamat NFH, Abdullah MF, Ismail K. 2017. Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. DWT. 59:210–219. doi:10.5004/dwt.2016.0097.
  • Jing F, Sohi SP, Liu Y, Chen J. 2018. Insight into mechanism of aged biochar for adsorption of PAEs: reciprocal effects of ageing and coexisting Cd2. Environ Pollut. 242(Pt B):1098–1107. doi:10.1016/j.envpol.2018.07.124.
  • Koohi P, Rahbar-Kelishami A, Shayesteh H. 2021. Efficient removal of Congo red dye using Fe3O4/NiO nanocomposite: synthesis and characterization. Environ Technol Innov. 23:101559. doi:10.1016/j.eti.2021.101559.
  • Li H, Mahyoub SAA, Liao W, Xia S, Zhao H, Guo M, Ma P. 2017. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresour Technol. 223:20–26. doi:10.1016/j.biortech.2016.10.033.
  • Li J, Dou X, Qin H, Sun Y, Yin D, Guan X. 2019. Characterization methods of zerovalent iron for water treatment and remediation. Water Res. 148:70–85. doi:10.1016/j.eti.2021.101559.
  • Liu Y, Zhu X, Qian F, Zhang S, Chen J. 2014. Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Adv. 4(109):63620–63626. doi:10.1039/c4ra11815d.
  • Ma X, Chen P, Zhou M, Zhong Z, Zhang F, Xing W. 2017. Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment. Ind Eng Chem Res. 56(24):7070–7079. doi:10.1021/acs.iecr.7b01440.
  • Mohammed AB, Omran AR, Baiee MA, Salman JM. 2018. Biosorption of safranin-o from aqueous solution by Nile rose plant (Eichhornia crassipes). Baghdad Sci. J. 15:26–30. doi:10.21123/bsj.2018.15.1.0026.
  • Mohebali S, Bastani D, Shayesteh H. 2019. Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens). J Mol Struct. 1176:181–193. doi:10.1016/j.molstruc.2018.08.068.
  • Nodehi R, Shayesteh H, Rahbar-Kelishami A. 2021. Fe3O4@ NiO core–shell magnetic nanoparticle for highly efficient removal of Alizarin red S anionic dye. Int J Environ Sci Technol. 1–14. doi:10.1007/s13762-021-03399-8.
  • Ocampo-Perez R, Padilla-Ortega E, Medellin-Castillo NA, Coronado-Oyarvide P, Aguilar-Madera CG, Segovia-Sandoval SJ, Flores-Ramírez R, Parra-Marfil A. 2019. Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci Total Environ. 655:1397–1408. doi:10.1016/j.scitotenv.2018.11.283.
  • Oladipo AA, Ifebajo AO. 2018. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J Environ Manage. 209:9–16. doi:10.1016/j.jenvman.2017.12.030.
  • Rahman-Setayesh MR, Rahbar Kelishami A, Shayesteh H. 2019. Equilibrium, kinetic, and thermodynamic applications for methylene blue removal using Buxus sempervirens leaf powder as a powerful low-cost adsorbent. J Part Sci Technol. 5(4):161–170.
  • Rawat AP, Kumar V, Singh DP. 2020. A combined effect of adsorption and reduction potential of biochar derived from Mentha plant waste on removal of methylene blue dye from aqueous solution. Sep Sci Technol. 55(5):907–921. doi:10.1080/01496395.2019.1580732.
  • Sahinkaya E, Sahin A, Yurtsever A, Kitis M. 2018. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. J Environ Manage. 222:420–427. doi:10.1016/j.jenvman.2018.05.057.
  • Saleh TA, Adio SO, Asif M, Dafalla H. 2018. Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon. J Clean Prod. 182:960–968. doi:10.1016/j.jclepro.2018.01.242.
  • Salimi A, Roosta A. 2019. Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim Acta. 675:134–139. doi:10.1016/j.tca.2019.03.024.
  • Santhi T, Manonmani S, Vasantha VS, Chang YT. 2016. A new alternative adsorbent for the removal of cationic dyes from aqueous solution. Arab J Chem. 9:S466–S474. doi:10.1016/j.arabjc.2011.06.004.
  • Santhosh C, Daneshvar E, Tripathi KM, Baltrėnas P, Kim TY, Baltrėnaitė E, Bhatnagar A. 2020. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution. Environ Sci Pollut Res Int. 27(26):32874–32887. doi:10.1007/s11356-020-09275-1.
  • Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. 2016. Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalin Water Treat. 57(27):12822–12831. doi:10.1080/19443994.2015.1054315.
  • Shayesteh H, Raji F, Kelishami AR. 2021. Influence of the alkyl chain length of surfactant on adsorption process: a case study. Surf Interfaces. 22:100806. doi:10.1016/j.surfin.2020.100806.
  • Temkin MI. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS. 12:327–323.
  • Venkatesh S, Venkatesh K, Quaff AR. 2017. Dye decomposition by combined ozonation and anaerobic treatment: cost effective technology. J Appl Res Technol. 15(4):340–345. doi:10.1016/j.jart.2017.02.006.
  • Vijayaraghavan K, Rangabhashiyam S, Ashokkumar T, Arockiaraj J. 2017. Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. J Taiwan Inst Chem Eng. 74:113–120. doi:10.1016/j.jtice.2017.02.003.
  • Wang Y, Zhang Y, Li S, Zhong W, Wei W. 2018. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J Mol Liq. 268:658–666. doi:10.1016/j.molliq.2018.07.085.
  • Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon from solution. J Sanit Engrg Div. 89(2):31–60. doi:10.1061/JSEDAI.0000430.
  • Xu X, Zheng Y, Gao B, Cao X. 2019. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chem Eng Sci. 368:564–572. doi:10.1016/j.cej.2019.02.165.
  • Yan L-g, Yang K, Shan R-r, Yan T, Wei J, Yu S-j, Yu H-q, Du B. 2015. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@ LDHs composites with easy magnetic separation assistance. J Colloid Interface Sci. 448:508–516.
  • Yang MT, Tong WC, Lee JK, Won E, Lin KYA. 2019. CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for oxone activation. J Colloid Interface Sci. 545:16–24. doi:10.1016/j.jcis.2019.02.090.
  • Yang X, Liu Z, Jiang Y, Li F, Xue B, Dong Z, Ding M, Chen R, Yang Q, An T, et al. 2020. Micro-structure, surface properties and adsorption capacity of ball-milled cellulosic biomass derived biochar based mineral composites synthesized via carbon-bed pyrolysis. Appl Clay Sci. 199:105877. doi:10.1016/j.clay.2020.105877.
  • Yi Y, Tu G, Zhao D, Tsang PE, Fang Z. 2019. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chem Eng J. 360:212–220. doi:10.1016/j.cej.2018.11.205.
  • Zhang P, O'Connor D, Wang Y, Jiang L, Xia T, Wang L, Tsang DCW, Ok YS, Hou D. 2020. A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater. 384:121286. doi:10.1016/j.jhazmat.2019.121286.
  • Zhang S, Ji Y, Dang J, Zhao J, Chen S. 2019. Magnetic apple pomace biochar: simple preparation, characterization, and application for enriching Ag(I) in effluents. Sci Total Environ. 668:115–123. doi:10.1016/j.scitotenv.2019.02.318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.