777
Views
5
CrossRef citations to date
0
Altmetric
Articles

Preparation of H3PO4 modified Sidr biochar for the enhanced removal of ciprofloxacin from water

ORCID Icon, , , , , , , & show all

References

  • Abid M, Niazi NK, Bibi I, Farooqi A, Ok YS, Kunhikrishnan A, Ali F, Ali S, Igalavit Hana AD, Arshad M. 2016. Arsenic(V) biosorption by charred orange peel in aqueous environments. Int J Phytoremediation. 18(5):442–449. doi:10.1080/15226514.2015.1109604.
  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Al-Solaimani SG, et al. 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chem Eng J. 396:125195. doi:10.1016/j.cej.2020.125195.
  • Asgarpanah J, Haghighat E. 2012. Phytochemistry and pharmacologic properties of Ziziphus spina Christi (L.) Willd. Afr J Pharm Pharmacol. 6:2332–2339. doi:10.5897/AJPP12.509.
  • Atugoda T, Gunawardane C, Ahmad M, Vithanage M. 2021. Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: kinetics, isotherm and thermodynamics. Chemosphere. 281:130676. doi:10.1016/j.chemosphere.2021.130676.
  • Balasubramani K, Sivarajasekar N, Naushad M. 2020. Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modeling. J. Mol. Liq. 301:112426. doi:10.1016/j.molliq.2019.112426.
  • Bi F, Zhang X, Du Q, Yue K, Wang R, Li F, Liu N, Huang Y. 2021. Influence of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts. Mol Catal. 509:111633. doi:10.1016/j.mcat.2021.111633.
  • Braghiroli FL, Bouafif H, Neculita CM, Koubaa A. 2018. Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water Air Soil Pollut. 229:230. doi:10.1007/s11270-018-3889-8.
  • Chen J, Ouyang J, Cai X, Xing X, Zhou L, Liu Z, Cai D. 2021. Removal of ciprofloxacin from water by millimeter-sized sodium alginate/H3PO4 activated corncob-based biochar composite beads. Sep Purif Technol. 276:119371. doi:10.1016/j.seppur.2021.119371.
  • Diao Y, Walawender WP, Fan LT. 2002. Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour Technol. 81(1):45–52. doi:10.1016/S0960-8524(01)00100-6.
  • Gwenzi W, Chaukura N, Noubactep C, Mukome FN. 2017. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J Environ Manage. 197:732–749. doi:10.1016/j.jenvman.2017.03.087.
  • Hernandez-Mena LE, Pecoraa AAB, Beraldob AL. 2014. Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng Trans. 37:115–120. doi:10.3303/CET1437020.
  • Huang W, Chen J, Zhang J. 2018. Removal of ciprofloxacin from aqueous solution by rabbit manure biochar. Environ Technol. 41:1–28. doi:10.1080/09593330.2018.1535628.
  • Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, Ali S, Murtaza B, Naeem MA, Rizwan M. 2020. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: a batch and column scale study. Environ Pollut. 261:114231. doi:10.1016/j.envpol.2020.114231.
  • Iqbal J, Shah NS, Sayed M, Imran M, Muhammad N, Howari FM, Alkhoori SA, Khan JA, Khan ZUH, Bhatnagar A, Polychronopoulou K, et al. 2019. Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. J Clean Prod. 235:875–886. doi:10.1016/j.jclepro.2019.06.316.
  • Iqbal J, Shah NS, Sayed M, Niazi NK, Imran M, Khan JA, Khan ZUH, Hussien AGS, Polychronopoulou K, Howari F. 2021. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater. 403:123854. doi:10.1016/j.jhazmat.2020.123854.
  • Johnson AC, Keller V, Dumont E, Sumpter JP. 2015. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci Total Environ. 511:747–755. doi:10.1016/j.scitotenv.2014.12.055.
  • Kong X, Liu Y, Pi J, Li W, Liao Q, Shang J. 2017. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Environ Sci Pollut Res Int. 24(7):6679–6687. doi:10.1007/s11356-017-8376-z.
  • Lapworth DJ, Baran N, Stuart ME, Ward RS. 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 163:287–303. doi:10.1016/j.envpol.2011.12.034.
  • Li J, Yu G, Pan L, Li C, You F, Xie S, Wang Y, Ma J, Shang X. 2018. Study of ciprofloxacin removal by biochar obtained from used tea leaves. J Environ Sci. 73:20–30. doi:10.1016/j.jes.2017.12.024.
  • Li K, Zheng Z, Li Y. 2010. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation. J Hazard Mater. 181(1–3):440–447. doi:10.1016/j.jhazmat.2010.05.030.
  • Li R, Wang Z, Guo J, Li Y, Zhang H, Zhu J, Xie X. 2018. Enhanced adsorption of ciprofloxacin by koh modified biochar derived from potato stems and leaves. Water Sci Technol. 77(3–4):1127–1136. doi:10.2166/wst.2017.636.
  • Li Z, Hong H, Liao L, Ackley CJ, Schulz LA, MacDonald RA, Mihelich AL, Emard SM. 2011. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf B Biointerfaces. 88(1):339–344. doi:10.1016/j.colsurfb.2011.07.011.
  • Liu N, Wang J, Tian M, Lei J, Wang J, Shi W, Zhang X, Tang L. 2021. Boron nitride nanosheets decorated MIL-53 (Fe) for efficient synergistic ibuprofen photocatalytic degradation by persulfate activation. J. Colloid Interface Sci. 603:270-281. doi:10.1016/j.jcis.2021.06.082.
  • Naushad M, ALOthman ZA, Awual MR, Alam MM, Eldesoky GE. 2015. Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics. 21(8):2237–2245. doi:10.1007/s11581-015-1401-7.
  • Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi AM, Aldawsari MS. 2019. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq. 293:111442. doi:10.1016/j.molliq.2019.111442.
  • Nautiyal P, Subramanian KA, Dastidar MG. 2016. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J Environ Manage. 182:187–197. doi:10.1016/j.jenvman.2016.07.063.
  • Onorevoli B, Maciel GP, Machado ME, Corbelini V, Caramao EB, Jacques RA. 2018. Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent. J Environ Chem Eng. 6(1):1279–1287. doi:10.1016/j.jece.2018.01.039.
  • Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Jr, Mohan D. 2019. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. 119(6):3510–3673. doi:10.1021/acs.chemrev.8b00299.
  • Premarathna K, Rajapaksha AU, Sarkar B, Kwon EE, Bhatnagar A, Ok YS, Vithanage M. 2019. Biochar-based engineered composites for sorptive decontamination of water: a review. Chem Eng J. 372:536–550. doi:10.1016/j.cej.2019.04.097.
  • Roma MJ, Weller MF, Wentzell SL. 2011. Removal of ciprofloxacin from water using adsorption, UV photolysis and UV/H2O2 degradation. Worcester (MA): Worcester Polytechnic Institute (Major Qualifying Project).
  • Sayed M, Khan JA, Shah LA, Shah NS, Shah F, Khan HM, Zhang P, Arandiyan H. 2018. Solar light responsive poly(vinyl alcohol)-assisted hydrothermal synthesis of immobilized TiO2/Ti film with the addition of peroxymonosulfate for photocatalytic degradation of ciprofloxacin in aqueous media: a mechanistic approach. J Phys Chem C. 122(1):406–421. doi:10.1021/acs.jpcc.7b09169.
  • Sayin F, Akar ST, Akar T. 2021. From green biowaste to water treatment applications: utilization of modified new biochar for the efficient removal of ciprofloxacin. Sustain Chem Pharm. 24:100522. doi:10.1016/j.scp.2021.100522.
  • Shah NS, Khan JA, Sayed M, Iqbal J, Khan ZUH, Muhammad N, Polychronopoulou K, Hussain S, Imran M, Murtaza B, et al. 2020. Nano-zerovalent copper as a Fenton-like catalyst for the degradation of ciprofloxacin in aqueous solution. J Water Proc Eng. 37:101325. doi:10.1016/j.jwpe.2020.101325.
  • Shah NS, Khan JA, Sayed M, Khan ZUH, Ali HS, Murtaza B, Khan HM, Imran M, Muhammad N. 2019. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82−. Chem Eng J. 356:199–209. doi:10.1016/j.cej.2018.09.009.
  • Shahat A, Awual MR, Naushad M. 2015. Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem Eng J. 271:155–163. doi:10.1016/j.cej.2015.02.097.
  • Shaheen SM, Niazi NK, Hassan NE, Bibi I, Wang H, Tsang DC, Ok YS, Bolan N, Rinklebe J. 2019. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev. 64(4):216–247. doi:10.1080/09506608.2018.1473096.
  • Sharma G, Gupta VK, Agarwal S, Bhogal S, Naushad M, Kumar A, Stadler FJ. 2018. Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. J Mol Liq. 260:342–350. doi:10.1016/j.molliq.2018.03.059.
  • Subedi N, Lähde A, Abu-Danso E, Iqbal J, Bhatnagar A. 2019. A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. Int J Biol Macromol. 137:948–959. doi:10.1016/j.ijbiomac.2019.06.151.
  • Sun Y, Li H, Li G, Gao B, Yue Q, Li   2016. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol. 217:239–244. doi:10.1016/j.biortech.2016.03.047.
  • Wang Y, Gong Y, Lin N, Yu L, Du B, Zhang X. 2022. Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci. 606(Pt 2):941–952. doi:10.1016/j.jcis.2021.08.075.
  • Wang Y, Lin N, Gong Y, Wang R, Zhang X. 2021a. Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): characterization, performance, and mechanisms. Chemosphere. 280:130663. doi:10.1016/j.chemosphere.2021.130663.
  • Wang Y, Wang R, Lin N, Wang Y, Zhang X. 2021b. Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst. J Colloid Interface Sci. 594:446–459. doi:10.1016/j.jcis.2021.03.046.
  • Wang Y, Yu L, Wang R, Wang Y, Zhang X. 2020. Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: characterization, kinetic and mechanism studies. J Colloid Interface Sci. 574:74–86. doi:10.1016/j.jcis.2020.04.042.
  • Yan J, Han L, Gao W, Xue S, Chen M. 2015. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol. 175:269–274. doi:10.1016/j.biortech.2014.10.103.
  • Yang Y, Ji W, Li X, Zheng Z, Bi F, Yang M, Xu J, Zhang X. 2021. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres. Chem Eng J. 420:129934. doi:10.1016/j.cej.2021.129934.
  • Yao S, Li X, Cheng H, Zhang C, Bian Y, Jiang X, Song Y. 2019. Resource utilization of a typical vegetable waste as biochars in removing phthalate acid esters from water: a sorption case study. Bioresour Technol. 293:122081. doi:10.1016/j.biortech.2019.122081.
  • Zhang C-L, Qiao G-L, Zhao F, Wang Y. 2011. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq. 163(1):53–56. doi:10.1016/%2Fj.molliq.2011.07.005.
  • Zhang X, Bi F, Zhu Z, Yang Y, Zhao S, Chen J, Lv X, Wang Y, Xu J, Liu N. 2021. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation. Appl Catal B Environ. 297:120393. doi:10.1016/j.apcatb.2021.120393.
  • Zhao J, Liang G, Zhang X, Cai X, Li R, Xie X, Wang Z. 2019. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci Total Environ. 688:1205–1215. doi:10.1016/j.scitotenv.2019.06.287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.