313
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel biowaste-based biosorbent material for effective purification of methylene blue from water environment

&

References

  • Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT. 2021. An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med. 25:100404. doi:10.1016/j.hermed.2020.100404.
  • Al-Ghouti MA, Da'ana DA. 2020. Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. 393:122383. doi:10.1016/j.jhazmat.2020.122383.
  • Albadarin AB, Solomon S, Daher MA, Walker G. 2018. Efficient removal of anionic and cationic dyes from aqueous systems using spent Yerba Mate “Ilex paraguariensis”. J Taiwan Inst Chem Eng. 82:144–155. doi:10.1016/j.jtice.2017.11.012.
  • Anantha MS, Jayanth V, Olivera S, Anarghya D, Venkatesh K, Jayanna BK, Sachin HP, Muralidhara HB. 2021. Microwave treated Bermuda grass as a novel photocatalyst for the treatment of methylene blue dye from wastewater. Environ Nanotechnol Monit Manage. 15:100447. doi:10.1016/j.enmm.2021.100447.
  • Benjelloun M, Miyah Y, Akdemir Evrendilek G, Zerrouq F, Lairini S. 2021. Recent advances in adsorption kinetic models: their application to dye types. Arab J Chem. 14(4):103031. doi:10.1016/j.arabjc.2021.103031.
  • Bhattacharjee C, Dutta S, Saxena VK. 2020. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ Adv. 2:100007. doi:10.1016/j.envadv.2020.100007.
  • Bushra R, Mohamad S, Alias Y, Jin Y, Ahmad M. 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review. Microporous Mesoporous Mater. 319:111040. doi:10.1016/j.micromeso.2021.111040.
  • Cheng H, Liu Y, Li X. 2021. Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr6+ from dye wastewater. J Hazard Mater. 415:125749. doi:10.1016/j.jhazmat.2021.125749.
  • Chien S, Clayton W. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J. 44(2):265–268. doi:10.2136/sssaj1980.03615995004400020013x.
  • Din MI, Khalid R, Najeeb J, Hussain Z. 2021. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-a critical review. J Clean Prod. 298:126567. doi:10.1016/j.jclepro.2021.126567.
  • Drumm FC, Grassi P, Georgin J, Tonato D, Pfingsten Franco DS, Chaves Neto JR, Mazutti MA, Jahn SL, Dotto GL. 2019. Potentiality of the Phoma sp. inactive fungal biomass, a waste from the bioherbicide production, for the treatment of colored effluents. Chemosphere. 235:596–605. doi:10.1016/j.chemosphere.2019.06.169.
  • Dubinin MM, Radushkevich LV. 1947. Equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sec USSR. 55:331–333.
  • Elwakeel KZ, Elgarahy AM, Guibal E. 2021. A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions. J Environ Chem Eng. 9(2):104767. doi:10.1016/j.jece.2020.104767.
  • Farghali MA, Abo-Aly MM, Salaheldin TA. 2021. Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. Inorg Chem Commun. 126:108487. doi:10.1016/j.inoche.2021.108487.
  • Franco DSP, Georgin J, Netto MS, Fagundez JLS, Salau NPG, Allasia D, Dotto GL. 2021. Conversion of the forest species Inga marginata and Tipuana tipu wastes into biosorbents: dye biosorption study from isotherm to mass transfer. Environ Technol Innov. 22:101521. doi:10.1016/j.eti.2021.101521.
  • Freundlich HMF. 1907. Over the adsorption in solution. Z Phys Chem. 57U(1):385–470. doi:10.1515/zpch-1907-5723.
  • Ghosh I, Kar S, Chatterjee T, Bar N, Das SK. 2021. Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR and ANN modelling. Process Saf Environ Prot. 149:345–361. doi:10.1016/j.psep.2020.11.003.
  • Golkar P, Nourbakhsh V. 2019. Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Ind Crops Prod. 130:170–178. doi:10.1016/j.indcrop.2018.12.074.
  • Hassan AA, Sajid M, Tanimu A, Abdulazeez I, Alhooshani K. 2021. Removal of methylene blue and rose Bengal dyes from aqueous solutions using 1-naphthylammonium tetrachloroferrate (III). J Mol Liq. 322:114966. doi:10.1016/j.molliq.2020.114966.
  • Hevira L, Zilfa R, Ighalo JO, Aziz H, Zein R. 2021. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J Ind Eng Chem. 97:188–199. doi:10.1016/j.jiec.2021.01.028.
  • Ho YS. 2006. Review of second-order models for adsorption systems. J Hazard Mater. 136(3):681–689. doi:10.1016/j.jhazmat.2005.12.043.
  • Lagergren S. 1898. About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl. 24:1–39.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Mallakpour S, Behranvand V, Mallakpour F. 2021. Adsorptive performance of alginate/carbon nanotube-carbon dot-magnesium fluorohydroxyapatite hydrogel for methylene blue-contaminated water. J Environ Chem Eng. 9(2):105170. doi:10.1016/j.jece.2021.105170.
  • Nath H, Saikia A, Goutam PJ, Saikia BK, Saikia N. 2021. Removal of methylene blue from water using okra (Abelmoschus esculentus L.) mucilage modified biochar. Bioresour Technol Rep. 14:100689. doi:10.1016/j.biteb.2021.100689.
  • Popa N, Visa M. 2021. New hydrothermal charcoal TiO2 composite for sustainable treatment of wastewater with dyes and cadmium cations load. Mater Chem Phys. 258:123927. doi:10.1016/j.matchemphys.2020.123927.
  • Saravanan A, Karishma S, Kumar PS, Varjani S, Yaashikaa PR, Jeevanantham S, Ramamurthy R, Reshma B. 2021. Simultaneous removal of Cu(II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere. 271:129519. doi:10.1016/j.chemosphere.2020.129519.
  • Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ. 2021. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 12(1):70–87. doi:10.1080/21655979.2020.1863034.
  • Siddiqui SI, Chaudhry SA. 2018. Nigella sativa plant based nanocomposite-MnFe2O4/BC: an antibacterial material for water purification. J Clean Prod. 200:996–1008. doi:10.1016/j.jclepro.2018.07.300.
  • Siddiqui SI, Chaudhry SA. 2019. Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J Clean Prod. 223:849–868. doi:10.1016/j.jclepro.2019.03.161.
  • Siddiqui SI, Manzoor O, Mohsin M, Chaudhry SA. 2019a. Nigella sativa seed based nanocomposite-MnO2/BC: an antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environ Res. 171:328–340. doi:10.1016/j.envres.2018.11.044.
  • Siddiqui SI, Rathi G, Chaudhry SA. 2018. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies. J Mol Liq. 264:275–284. doi:10.1016/j.molliq.2018.05.065.
  • Siddiqui SI, Zohra F, Chaudhry SA. 2019b. Nigella sativa seed based nanohybrid composite-Fe2O3-SnO2/BC: A novel material for enhanced adsorptive removal of methylene blue from water. Environ Res. 178:108667. doi:10.1016/j.envres.2019.108667.
  • Subratti A, Vidal JL, Lalgee LJ, Kerton FM, Jalsa NK. 2021. Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue. Sustain Chem Pharm. 21:100421. doi:10.1016/j.scp.2021.100421.
  • Tahazadeh S, Karimi H, Mohammadi T, Motejadded Emrooz HB, Tofighy MA. 2021. Fabrication of biodegradable cellulose acetate/MOF-derived porous carbon nanocomposite adsorbent for methylene blue removal from aqueous solutions. J Solid State Chem. 299:122180. doi:10.1016/j.jssc.2021.122180.
  • Tara N, Siddiqui SI, Bach Q-V, Chaudhry SA. 2020a. Reduce graphene oxide-manganese oxide-black cumin based hybrid composite (rGO-MnO2/BC): a novel material for water remediation. Mater Today Commun. 25:101560. doi:10.1016/j.mtcomm.2020.101560.
  • Tara N, Siddiqui SI, Nirala RK, Abdulla NK, Chaudhry SA. 2020b. Synthesis of antibacterial, antioxidant and magnetic Nigella sativa-graphene oxide based nanocomposite BC-GO@Fe3O4 for water treatment. Colloid Interface Sci Commun. 37:100281. doi:10.1016/j.colcom.2020.100281.
  • Thabede P, Shooto N, Naidoo E. 2021. Sorption of chromium(VI), cadmium(II) ions and methylene blue dye by pristine, defatted and carbonized Nigella sativa L. seeds from aqueous solution. Asian J Chem. 33(2):471–483. doi:10.14233/ajchem.2021.23021.
  • Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon from solution. J Sanit Engrg Div. 89(2):31–60. doi:10.1061/JSEDAI.0000430.
  • Yu KL, Lee XJ, Ong HC, Chen W-H, Chang J-S, Lin C-S, Show PL, Ling TC. 2021. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ Pollut. 272:115986. doi:10.1016/j.envpol.2020.115986.
  • Zhang W, Zhang Y. 2020. Development of ZnFe2O4 nanoparticle functionalized baker’s yeast composite for effective removal of methylene blue via adsorption and photodegradation. J Water Process Eng. 37:101234. doi:10.1016/j.jwpe.2020.101234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.