177
Views
1
CrossRef citations to date
0
Altmetric
Articles

Elevated atmospheric CO2 enhances the phytoremediation efficiency of tall fescue (Festuca arundinacea) in Cd-polluted soil

, , , , &

References

  • Alam MS, Lamb DW, Rahman MM. 2019. In-situ partitioning of evaporation and transpiration components using a portable evapotranspiration dome—a case study in Tall Fescue (Festuca arundinacea). Agric Water Manage. 213:352–357. doi:10.1016/j.agwat.2018.10.042.
  • Boominathan R, Doran PM. 2003. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng. 83(2):158–167. doi:10.1002/bit.10656.
  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M. 2012. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater. 231–232:36–42. doi:10.1016/j.jhazmat.2012.06.031.
  • Chaturvedi R, Favas PJ, Pratas J, Varun M, Paul MS. 2019. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: ecological hazard and Prospects for phytoremediation. Ecotoxicol Environ Saf. 183:109570–109579. doi:10.1016/j.ecoenv.2019.109570.
  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C. 2005. Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot. 56(412):765–775. doi:10.1093/jxb/eri062.
  • Cui H, Li H, Zhang S, Yi Q, Zhou J, Fang G, Zhou J. 2020. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere. 242:125252–125258. doi:10.1016/j.chemosphere.2019.125252.
  • Diao X, He L, Xi B, Wang P. 2014. Can CO2 fertilization enhance phytoremediation of organic soil contamination? Soil Sediment Contam . 23(2):126–143. doi:10.1080/15320383.2013.786020.
  • Dobránszki J, Asbóth G, Homoki D, Bíró-Molnár P, Teixeira da Silva JA, Remenyik J. 2017. Ultrasonication of in vitro potato single node explants: activation and recovery of antioxidant defence system and growth responses. Plant Physiol Biochem. 121:153–160. doi:10.1016/j.plaphy.2017.10.022.
  • Dong Q, Hu S, Fei L, Liu L, Wang Z. 2019. Interaction between Cd and Zn on metal accumulation, translocation and mineral nutrition in tall fescue (Festuca arundinacea). IJMS. 20(13):3332–3313. doi:10.3390/ijms20133332.
  • Ghanati F, Mohamadalikhani S, Soleimani M, Afzalzadeh R, Hajnorouzi A. 2015. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water. Electromagn Biol Med. 34(3):211–215. doi:10.3109/15368378.2015.1076453.
  • Guo Q, Meng L, Zhang YN, Mao PC, Tian XX, Li SS, Zhang L. 2017. Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. Ecotoxicol Environ Saf. 139:50–55. doi:10.1016/j.ecoenv.2016.12.013.
  • Hou R, Huo X, Zhang S, Xu C, Huang Y, Xu X. 2020. Elevated levels of lead exposure and impact on the anti-inflammatory ability of oral sialic acids among preschool children in e-waste areas. Sci Total Environ. 699:134380–134386. doi:10.1016/j.scitotenv.2019.134380.
  • Huang MY, Ai HL, Xu XX, Chen K, Niu H, Zhu HH, Sun J, Du DY, Chen L. 2018. Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. Ecotoxicol Environ Saf. 164:32–40. doi:10.1016/j.ecoenv.2018.07.118.
  • Jia X, Wang W, Chen Z, He Y, Liu J. 2014. Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changed under elevated atmospheric CO2 and cadmium-contaminated soils. Environ Exp Bot. 107:134–143. doi:10.1016/j.envexpbot.2014.06.005.
  • Jia Y, Tang SR, Ju XH, Shu LN, Tu SX, Feng RW, Giusti L. 2011. Effects of elevated CO(2) levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress. J Zhejiang Univ Sci B. 12(4):313–325. doi:10.1631/jzus.B1000181.
  • Jiang SZ, Luo J, Ye YQ, Yang G, Pi W, He WX. 2019. Using Pb isotope to quantify the effect of various sources on multi-metal polluted soil in Guiyu. Bull Environ Contam Toxicol. 102(3):413–418. doi:10.1007/s00128-018-02534-5.
  • Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y. 2016. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf. 126:154–162. doi:10.1016/j.ecoenv.2015.12.037.
  • Kim SS, Xu X, Zhang Y, Zheng X, Liu R, Dietrich KN, Reponen T, Xie C, Sucharew H, Huo X, et al. 2020. Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China. Environ Int. 137:105580–105589. doi:10.1016/j.envint.2020.105580.
  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF. 2005. Tropospheric O(3) compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO(2). New Phytol. 168(3):623–636. doi:10.1111/j.1469-8137.2005.01557.x.
  • Kumari S, Agrawal M, Tiwari S. 2013. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut. 174:279–288. doi:10.1016/j.envpol.2012.11.021.
  • Li H, Xu Z, Tang C. 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss Organ Cult. 103(2):155–163. doi:10.1007/s11240-010-9763-z.
  • Li Q, Lai L, Du H, Cai W, Guan T, Zhang X, Jiang L, Zheng Y, Yu Y, Gao Y, et al. 2017. Elevated CO2 concentrations affect the growth patterns of dominant C3 and C4 shrub species differently in the Mu Us Sandy Land of Inner Mongolia. Botany. 95(9):869–877. doi:10.1139/cjb-2017-0014.
  • Li T, Di Z, Han X, Yang X. 2012. Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii. Plant Soil. 354(1–2):325–334. doi:10.1007/s11104-011-1068-4.
  • Li T, Tao Q, Han X, Yang X. 2013. Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii. Sci Total Environ. 454–455:510–516. doi:10.1016/j.scitotenv.2013.03.054.
  • Li XMei, Zhang L, Li Y, Ma LJu, Chen Q, Wang LL, He X. 2011. Effects of elevated carbon dioxide and/or ozone on endogenous plant hormones in the leaves of Ginkgo biloba. Acta Physiol Plant. 33(1):129–136. doi:10.1007/s11738-010-0528-4.
  • Li Z, Tang S, Deng X, Wang R, Song Z. 2010. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. J Hazard Mater. 177(1-3):352–361. doi:10.1016/j.jhazmat.2009.12.039.
  • Luo J, Qi SH, Xie XM, Gu Sophie XW, Wang JJ. 2017. The assessment of source attribution of soil pollution in a typical e-waste recycling town and its surrounding regions using the combined organic and inorganic dataset. Environ Sci Pollut Res. 24(3):3131–3141. doi:10.1007/s11356-016-8072-4.
  • Luo J, Yang G, Igalavithana AD, He W, Gao B, Tsang DCW, Ok YS. 2019. Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens. Environ Pollut. 255:113169–113169. doi:10.1016/j.envpol.2019.113169.
  • Lou YH, Zhao P, Wang DL, Amombo E, Sun X, Wang H, Zhuge YP. 2017. Germination, physiological responses and gene expression of tall fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. Plos One. 12(1):e0169495. doi:10.1371/journal.pone.0169495.
  • Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29(2):248–258. doi:10.1016/j.biotechadv.2010.12.001.
  • Mahmud J, Al Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M. 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf. 147:990–1001. doi:10.1016/j.ecoenv.2017.09.045.
  • Manderscheid R, Pacholski A, Weigel HJ. 2010. Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: Evidence for a sink limitation of beet growth under elevated CO2. Eur J Agron . 32(3):228–239. doi:10.1016/j.eja.2009.12.002.
  • Martinez-Alcala I, Hernandez LE, Esteban E, Walker DJ, Bernal MP. 2013. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils. Plant Physiol Biochem. 66:47–55. doi:10.1016/j.plaphy.2013.01.017.
  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 65(6):1027–1039. doi:10.1016/j.chemosphere.2006.03.033.
  • Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE. 2011. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health. 33(S1):23–30. doi:10.1007/s10653-010-9364-0.
  • Ourbak T, Magnan AK. 2018. The Paris Agreement and climate change negotiations: small Islands, big players. Reg Environ Change. 18(8):2201–2207. doi:10.1007/s10113-017-1247-9.
  • Qin L, Guo S, Ai W, Tang Y. 2008. Selection of candidate salad vegetables for controlled ecological life support system. Adv Space Res. 41(5):768–772. doi:10.1016/j.asr.2007.09.037.
  • Qu G, Tong Y, Gao P, Zhao Z, Song X, Ji P. 2013. Phytoremediation potential of Solanum nigrum L. under different cultivation protocols. Bull Environ Contam Toxicol. 91(3):306–309. doi:10.1007/s00128-013-1046-z.
  • Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, Li T. 2014. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf. 103:101–107. doi:10.1016/j.ecoenv.2013.10.016.
  • Shen Z, Wang Y, Chen Y, Zhang Z. 2017. Transfer of heavy metals from the polluted rhizosphere soil to Celosia argentea L. in copper mine tailings. Hortic Environ Biotechnol. 58(1):93–100. doi:10.1007/s13580-017-0077-5.
  • Tang L, Hamid Y, Sahito ZA, Gurajala HK, He ZL, Yang XE. 2019. Effects of CO2 application coupled with endophyte inoculation on rhizosphere characteristics and cadmium uptake by Sedum alfredii Hance in response to cadmium stress. J Environ Manage. 239:287–298. doi:10.1016/j.jenvman.2019.03.084.
  • Tang T, Liu P, Zheng G, Li W. 2016. Two phases of response to long-term moderate heat: Variation in thermotolerance between Arabidopsis thaliana and its relative Arabis paniculata. Phytochemistry. 122:81–90. doi:10.1016/j.phytochem.2016.01.003.
  • Tang X, Li Q, Wu M, Lin L, Scholz M. 2016. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J Environ Manage. 181:646–662. doi:10.1016/j.jenvman.2016.08.043.
  • Visoottiviseth P, Francesconi K, Sridokchan W. 2002. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut. 118(3):453–461. doi:10.1016/s0269-7491(01)00293-7.
  • Wan X, Ming Lei M, Chen T, Bin Yang J, Xing Liu H, Tao Chen Y. 2015. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ Sci Pollut Res Int. 22(21):16631–16639. doi:10.1007/s11356-015-4746-6.
  • Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 27(2):195–226. doi:10.1016/j.biotechadv.2008.11.002.
  • Wei S, Anders I, Feller U. 2014. Selective uptake, distribution, and redistribution of 109 Cd, 57 Co, 65 Zn, 63 Ni, and 134 Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L. Environ Sci Pollut Res Int. 21(12):7624–7630. doi:10.1007/s11356-014-2636-y.
  • Weis JS, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 30(5):685–700. doi:10.1016/j.envint.2003.11.002.
  • Witters N, van Slycken S, Ruttens A, Adriaensen K, Meers E, Meiresonne L, Tack FMG, Thewys T, Laes E, Vangronsveld J. 2009. Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. Bioenerg Res. 2(3):144–152. doi:10.1007/s12155-009-9042-1.
  • Wu MX, Luo Q, Liu SL, Zhao Y, Long Y, Pan YZ. 2018. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol Environ Saf. 162:35–41. doi:10.1016/j.ecoenv.2018.06.049.
  • Xiong PP, He CQ, Kokyo OH, Chen XP, Liang X, Liu XY, Cheng X, Wu CL, Shi ZC. 2018. Medicago sativa L. enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in situ. Ecol Eng. 116:61–66. doi:10.1016/j.ecoleng.2018.02.004.
  • Xu P, Wang Z. 2013. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: chemical forms and tissue distribution. Environ Exp Bot. 96:35–42. doi:10.1016/j.envexpbot.2013.09.001.
  • Xu P, Wang Z. 2014. A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water Air Soil Pollut. 225:1–9.
  • Xu S, He X, Chen W, Huang Y, Zhao Y, Li B. 2015. Differential sensitivity of four urban tree species to elevated O3. Urban Forest Urban Greening. 14(4):1166–1173. doi:10.1016/j.ufug.2015.10.015.
  • Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ. 650:594–603. doi:10.1016/j.scitotenv.2018.09.055.
  • Zhang JX, Fei L, Dong Q, Zuo SF, Li YB, Wang ZL. 2021. Cadmium binding during leaf senescence in Festuca arundinacea: promotion phytoextraction efficiency by harvesting dead leaves. Chemosphere. 289:1-10. doi:10.1016/j.chemosphere.2021.133253.
  • Zhang XH, Liu YH, Liu BW, Liu Q, Wen SY, Ao B, Lin ZQ, Zheng YL, Yang WZ, Chu XT, et al. 2019. Arbuscular mycorrhiza fungus improved growth, antioxidant defense, and endogenous hormones in tall fescue under low-light stress. S Afr J Bot. 127:43–50. doi:10.1016/j.sajb.2019.08.032.
  • Zheng J, Wang H, Li Z, Tang S, Chen Z. 2008. Using elevated carbon dioxide to enhance copper accumulation in Pteridium revolutum, a copper-tolerant plant, under experimental conditions. Int J Phytorem. 10(2):161–172. doi:10.1080/15226510801913934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.