379
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ion homeostasis in differently adapted populations of Suaeda vera Forssk. ex J.F. Gmel. for phytoremediation of hypersaline soils

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abou Seeda MA, Yassen AA, Abou EL-Nour EAA, Gad Mervat M, Zaghloul SM. 2020. Phytoremediation of heavy metals principles, mechanisms, enhancements with several efficiency enhancer methods and perspectives: a review. Middle East J Agric Res. 9:186–214.
  • Acosta-Motos JR, Ortuno MF, Vicente AB, Vivancos PD, Blanco MJS, Hernandez JA. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7(1):18. doi:10.3390/agronomy7010018.
  • Adams E, Shin R. 2014. Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol. 56(3):231–249. doi:10.1111/jipb.12159.
  • Adhikari B, Dhungana SK, Kim ID, Shin DH. 2020. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J. Saudi Soc Agric Sci. 19(4):261–269. doi:10.1016/j.jssas.2019.02.001.
  • Al-Maskri A, Hameed M, Ashraf M, Khan MM, Fatima S, Nawaz T, Batool R. 2014. Structural features of some wheat (Triticum spp.) landraces/cultivars under drought and salt stress. Arid Land Res Manag. 28(3):355–370. doi:10.1080/15324982.2013.841306.
  • Almeida DM, Oliveira MM, Saibo NJM. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. 40(1 suppl 1):326–345. doi:10.1590/1678-4685-GMB-2016-0106.
  • Arteaga S, Yabor L, Diez MJ, Prohens J, Boscaiu M, Vicente O. 2020. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy. 10(6):817. doi:10.3390/agronomy10060817.
  • Bates LS, Waldren RP, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Bazihizina N, Colmer TD, Barrett-Lennard EG. 2009. Responseto non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations. Ann Bot. 104(4):737–745. doi:10.1093/aob/mcp151.
  • Bazihizina N, Vita F, Balestrini R, Kiferle C, Caparrotta S, Ghignone S, Atzori G, Mancuso S, Shabala S. 2022. Early signalling processes in roots play a crucial role in the differential salt tolerance in contrasting Chenopodium quinoa accessions. J Exp Bot. 73(1):292–306. doi:10.1093/jxb/erab388.
  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. 2014. The twins K+ and Na+ in plants. J Plant Physiol. 171(9):723–731. doi:10.1016/j.jplph.2013.10.014.
  • Bhuiyan M, Raman A, Hodgkins D, Mitchell D, Nicol H. 2016. An ex-situ salinity restoration assessment using legume, saltbush, and grass in Australian soil. Clean Soil Air Water. 44(7):840–849. doi:10.1002/clen.201500214.
  • Bradford MMA. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Calone R, Bregaglio S, Sanoubar R, Noli E, Lambertini C, Barbanti L. 2021. Physiological adaptation to water salinity in six wild halophytes suitable for Mediterranean agriculture. Plants. 10(2):309. doi:10.3390/plants10020309.
  • Cao Y-R, Chen H-W, Li Z-G, Tao J-J, Ma B, Zhang W-K, Chen S-Y, Zhang J-S. 2015. Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses. Plant Cell Physiol. 56(4):803–818. doi:10.1093/pcp/pcv009.
  • Carillo P, Cirillo C, De Micco V, Arena C, De Pascale S, Rouphael Y. 2019. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric Water Manage. 212:12–22. doi:10.1016/j.agwat.2018.08.037.
  • Chai ZQ, Gao Q. 2020. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. Plant Biol. 20:70.
  • Dehan K, Tal M. 1978. Salt tolerance of the wild relatives of the cultivated tomato: responses of Solanum pennellii to high salinity. Irrig Sci. 1(1):71–76. doi:10.1007/BF00269009.
  • Delorge I, Janiak M, Carpentier S, Dijck PV. 2014. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci. 5(147):147.
  • Diwan H, Ahmad A, Iqbal M. 2010. Uptake-related parameters as indices of phytoremediation potential. Biologia. 65(6):1004–1011. doi:10.2478/s11756-010-0106-7.
  • El-Maboud MA. 2013. Anatomical and physiological responses of three species of Suaeda Forssk. ex Scop. under different habitat conditions. Res J Appl Sci. 9:5370–5379.
  • Fida F, Talib MD, Fida F, Iqbal N, Aqeel M, Iqbal MN, Noman A. 2018. Leaf image recognition-based identification of plants: supportive framework for plant systematics. PSM Biol Res. 3:125–131.
  • Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol. 179(4):945–963. doi:10.1111/j.1469-8137.2008.02531.x.
  • Fradera-Soler M, Rudall PJ, Prychid CJ, Grace OM. 2021. Evolutionary success in arid habitats: Morpho-anatomy of succulent leaves of Crassula species from southern Africa. J Arid Environ. 185:104319. doi:10.1016/j.jaridenv.2020.104319.
  • Ghanem AFM, Mohamed E, Kasem AMMA, El-Ghamery AA. 2021. Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants. 10(6):1100. doi:10.3390/plants10061100.
  • Grigore MN, Toma C, Lacramioara I. 2010. Anatomical and ecological observations on Mediterranean halophytes: Suaeda Forssk. ex Scop. genus. Univ Iaşi Rom. 54:23–28.
  • Guo H, Huang Z, Li M, Hou Z. 2020. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep. 10(1):21844.
  • Hameed A, Hussain T, Gulzar S, Aziz I, Gul B, Khan MA. 2012. Salt tolerance of a cash crop halophyte Suaeda fruticosa: biochemical responses to salt and exogenous chemical treatments. Acta Physiol Plant. 34(6):2331–2340. doi:10.1007/s11738-012-1035-6.
  • Hameed M, Nawaz T, Ashraf M, Naz N, Batool R. 2013. Physio-anatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turk J Bot. 37:715–724.
  • Hong Z, Lakkineni K, Zhang Z, Verma DPS. 2000. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122(4):1129–1136. doi:10.1104/pp.122.4.1129.
  • Jackson ML. 1962. Soil chemical analysis. London: Constable & Co. Ltd.
  • Kamran M, Parveen MA, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT. 2019. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. IJMS. 21(1):148. doi:10.3390/ijms21010148.
  • Kowalenko CG, Lowe LE. 1973. Determination of nitrate in soil extracts. Soil Sci Soc Amer Proc. 37(4):660–660. doi:10.2136/sssaj1973.03615995003700040051x.
  • Kumar A, Mann A, Kumar A, Kumar N, Meena BL. 2021. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. Int J Phytoremediation. 23(10):1041–1051. doi:10.1080/15226514.2021.1874289.
  • Kumari A, Das P, Parida AK, Agarwal PK. 2015. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci. 6:537. doi:10.3389/fpls.2015.00537.
  • Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiol. 182(4):1624–1635. doi:10.1104/pp.19.01464.
  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 4(272):272.
  • Liang L, Liu W, Sun Y, Huo X, Li S, Zhou Q. 2017. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev. 25(3):269–281. doi:10.1139/er-2016-0063.
  • Liu L, Nakamura Y, Taliman NA, Sabagh AE, Moghaieb RE, Saneoka H. 2020. Differences in the growth and physiological responses of the leaves of Peucedanum japonicum and Hordeum vulgare exposed to salinity. Agriculture. 10(8):317. doi:10.3390/agriculture10080317.
  • Liu X, Duan D, Li W, Tadano T, Khan A. 2006. A comparative study on responses of growth and solute composition in halophytes Suaeda salsa and Limonium bicolor to salinity. In: Khan MA, Weber DJ, editors. Ecolophysiology of high salinity tolerant plants. Netherlands: Springer. p. 135–143.
  • Lopes DM, Walford N, Viana H, Sette Junior CR. 2016. A proposed methodology for the correction of the leaf area index measured with a ceptometer for Pinus and Eucalyptus forests. Revista Árvore. 40:845–854.
  • Lutts S, Lefèvre I. 2015. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot. 115(3):509–528. doi:10.1093/aob/mcu264.
  • Makbul S, Guler NS, Durmus N, Guven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress. Turk J Bot. 35:1002–1007.
  • Manousaki E, Kalogerakis N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res. 50(2):656–660. doi:10.1021/ie100270x.
  • Marrugo-Negrete J, Durango HJ, Pinedo HJ, Olivero VJ, Diez S. 2015. Chemosphere. 127:58–63. Phytoremediation of mercury-contaminated soils by Jatropha curcas. doi:10.1016/j.chemosphere.2014.12.073.
  • Mishra A, Tanna B. 2017. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front Plant Sci. 8:829. doi:10.3389/fpls.2017.00829.
  • Mohamed IAA, Shalby N, M. A. El-Badri A, Saleem MH, Khan MN, A. Nawaz M, Qin M, Agami RA, Kuai J, Wang B, et al. 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy. 10(8):1186. doi:10.3390/agronomy10081186.
  • Moore S, Stein WH. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem. 176(1):367–388.
  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev. 82(4):371–406. doi:10.1007/s12229-016-9173-y.
  • Naseer M, Hameed M, Zahoor A, Ahmad F. 2017. Photosynthetic response in buttonwood (Conocarpus erectus L.) to salt stress. Pak J Bot. 49:847–856.
  • Naveed M, Sajid H, Mustafa A, Niamat B, Ahmad Z, Yaseen M, Kamran M, Rafique M, Ahmar S, Chen JT. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica Napus L.) through calcium-fortified composted animal manure. Sustainability. 12(3):846.
  • Nawaz T, Hameed M, Ashraf M, Batool S, Naz N. 2013. Modifications in root and stem anatomy for water conservation in some diverse blue panic (Panicum antidotale Retz.) ecotypes under drought stress. Arid Land Res Manag. 27(3):286–297. doi:10.1080/15324982.2012.727947.
  • Naz N, Rafique T, Hameed M, Ashraf M, Batool R, Fatima S. 2014. Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiol Plant. 36(11):2959–2974. doi:10.1007/s11738-014-1668-8.
  • Obgurn RM, Edwards EJ. 2010. The ecological water-use strategies of succulent plants. Adv Bot Res. 55:179–225.
  • Palchetti V, Reginato M, Llanes A, Hornbacher J, Papenbrock J, Barboza GE, Luna V, Cantero JJ. 2021. New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae, Solanaceae). Plant Physiol Biochem. 163:166–177. doi:10.1016/j.plaphy.2021.03.054.
  • Panda A, Rangani J, Parida AK. 2021. Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiol Biochem. 158:284–296. doi:10.1016/j.plaphy.2020.11.012.
  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK. 2016. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci. 7:351. doi:10.3389/fpls.2016.00351.
  • Rehman S, Abbas G, Shahid M, Saqib M, Farooq ABU, Hussain M, Murtaza B, Amjad M, Naeem MA, Farooq A. 2019. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation. Ecotoxicol Environ Saf. 171:146–153.
  • Rozema J, Schat H. 2013. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot. 92:83–95. doi:10.1016/j.envexpbot.2012.08.004.
  • Rozentsvet OA, Nesterov VN, Bogdanova ES. 2017. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ J Plant Physiol. 64(4):464–477. doi:10.1134/S1021443717040112.
  • Sekmen AH, Bor M, Ozdemir F, Turkan I. 2013. Current concepts about salinity and salinity tolerance in plants. In: Tuteja N, Gill SS, editors. Climate change and plant abiotic stress tolerance. New York (NY): Wiley Online Library. p. 163–188.
  • Shabir R, Abbas G, Saqib M, Shahid M, Shah GM, Akram M, Niazi NK, Naeem MA, Hussain M, Ashraf F. 2018. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. Int J Phytoremediation. 20(7):739–746. doi:10.1080/15226514.2017.1413339.
  • Shao Q, Han N, Ding TL, Zhou F, Wang BS. 2014. SsHKT1;1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol. 41(8):790–802. doi:10.1071/FP13265.
  • Silva PO, Medina EF, Barros RS, Ribeiro DM. 2014. Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species. J Plant Physiol. 171(1):14–22. doi:10.1016/j.jplph.2013.09.004.
  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot. 115(3):433–447.
  • Tran DQ, Konishi A, Cushman JC, Morokuma M, Toyota M, Agarie S. 2020. Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L. Plant Prod Sci. 23(1):91–102. doi:10.1080/1343943X.2019.1647788.
  • USDA 1954. Soil mechanics level I. Module 3 - USDA textural soil classification study guide. Washington (DC): National Employee Development Staff, Soil Conservation Service, United States Department of Agriculture (USDA).
  • Wolf B. 1982. An improved universal extracting solution and its use for diagnosing soil fertility. Commun Soil Sci Plant Anal. 13(12):1005–1033. doi:10.1080/00103628209367331.
  • Wu H. 2018. Plant salt tolerance and Na+ sensing and transport. Crop J. 6(3):215–225. doi:10.1016/j.cj.2018.01.003.
  • Yemm E, Willis A. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57(3):508–514. doi:10.1042/bj0570508.
  • Yoshida S, Forno DA, Cock JH, Gomez KA. 1976. Laboratory manual for physiological studies of rice. Las Banos, Laguna: IRRI. p. 83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.